exp backoff and theads handling

This commit is contained in:
TIBERGHIEN corentin
2026-01-20 01:10:09 +01:00
parent 08518892f2
commit dacedd1ceb
9 changed files with 469 additions and 331 deletions

View File

@@ -120,10 +120,7 @@ impl eframe::App for P2PClientApp {
self.known_peers = peers; self.known_peers = peers;
} }
NetworkEvent::FileTreeReceived(_peer_id, _) => { NetworkEvent::FileTreeReceived(node_hash, merklenode) => {
todo!();
//self.loaded_tree_nodes.insert(_peer_id, tree);
//self.status_message = "🔄 File tree updated successfully.".to_string(); //self.status_message = "🔄 File tree updated successfully.".to_string();
} }
NetworkEvent::FileTreeRootReceived(peer_id, root_hash) => { NetworkEvent::FileTreeRootReceived(peer_id, root_hash) => {
@@ -406,9 +403,10 @@ impl eframe::App for P2PClientApp {
_ => {} _ => {}
} }
if ui.button("Send Ping").clicked() { if ui.button("Send Ping").clicked() {
let res = self let res = self.network_cmd_tx.send(NetworkCommand::Ping(
.network_cmd_tx peer.0.to_string(),
.send(NetworkCommand::Ping(peer.0.to_string())); self.connected_address.clone(),
));
} }
if ui.button("Send Nat Traversal Request").clicked() { if ui.button("Send Nat Traversal Request").clicked() {
match self.network_cmd_tx.send(NetworkCommand::NatTraversal( match self.network_cmd_tx.send(NetworkCommand::NatTraversal(

View File

@@ -6,28 +6,20 @@ const DIRECTORY: u8 = 1;
const BIG: u8 = 2; const BIG: u8 = 2;
const BIGDIRECTORY: u8 = 3; const BIGDIRECTORY: u8 = 3;
fn parse_received_datum(recevied_datum: Vec<u8>, datum_length: usize, mut tree: MerkleTree) { pub fn parse_received_datum(
if datum_length > recevied_datum.len() { recevied_datum: Vec<u8>,
return; datum_length: usize,
} ) -> Option<([u8; 32], MerkleNode)> {
if datum_length < 32 + 64 {
return;
}
let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error"); let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error");
let sigstart = datum_length - 64; let sigstart = datum_length - 64;
let value = &recevied_datum[32..sigstart]; let value = &recevied_datum[32..sigstart];
let value_slice = value.to_vec(); let value_slice = value.to_vec();
let signature: [u8; 32] = recevied_datum[sigstart..datum_length]
.try_into()
.expect("Taille incorrecte");
let datum_type = value_slice[0]; let datum_type = value_slice[0];
match datum_type { match datum_type {
CHUNK => { CHUNK => Some((
tree.data.insert( hash_name,
hash_name, MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
MerkleNode::Chunk(crate::ChunkNode { data: value_slice }), )),
);
}
DIRECTORY => { DIRECTORY => {
let nb_entries = value_slice[1]; let nb_entries = value_slice[1];
let mut dir_entries = Vec::new(); let mut dir_entries = Vec::new();
@@ -46,23 +38,28 @@ fn parse_received_datum(recevied_datum: Vec<u8>, datum_length: usize, mut tree:
let current = DirectoryNode::new(dir_entries); let current = DirectoryNode::new(dir_entries);
match current { match current {
Ok(current_node) => { Ok(current_node) => Some((hash_name, MerkleNode::Directory(current_node))),
tree.data
.insert(hash_name, MerkleNode::Directory(current_node));
}
Err(e) => { Err(e) => {
println!("{}", e); println!("{}", e);
None
} }
} }
} }
BIG => { BIG => {
let chlidren: Vec<NodeHash> = Vec::new(); let chlidren: Vec<NodeHash> = Vec::new();
Some((
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: chlidren,
}),
))
/*let chlidren: Vec<NodeHash> = Vec::new();
tree.data.insert( tree.data.insert(
hash_name, hash_name,
MerkleNode::Big(crate::BigNode { MerkleNode::Big(crate::BigNode {
children_hashes: chlidren, children_hashes: chlidren,
}), }),
); );*/
} }
BIGDIRECTORY => { BIGDIRECTORY => {
let nb_entries = value_slice[1]; let nb_entries = value_slice[1];
@@ -82,15 +79,13 @@ fn parse_received_datum(recevied_datum: Vec<u8>, datum_length: usize, mut tree:
let current = BigDirectoryNode::new(dir_entries); let current = BigDirectoryNode::new(dir_entries);
match current { match current {
Ok(current_node) => { Ok(current_node) => Some((hash_name, MerkleNode::BigDirectory(current_node))),
tree.data
.insert(hash_name, MerkleNode::BigDirectory(current_node));
}
Err(e) => { Err(e) => {
println!("{}", e); println!("{}", e);
None
} }
} }
} }
_ => {} _ => None,
} }
} }

View File

@@ -7,17 +7,19 @@ mod messages_structure;
mod peers_refresh; mod peers_refresh;
mod registration; mod registration;
mod server_communication; mod server_communication;
mod threads_handling;
use crate::{ use crate::{
cryptographic_signature::CryptographicSignature, cryptographic_signature::CryptographicSignature,
message_handling::EventType, message_handling::EventType,
messages_channels::{MultipleSenders, start_receving_thread}, messages_channels::{MultipleSenders, start_receving_thread, start_retry_thread},
messages_structure::{ messages_structure::{
NATTRAVERSALREQUEST, NATTRAVERSALREQUEST2, ROOTREQUEST, construct_message, NATTRAVERSALREQUEST, NATTRAVERSALREQUEST2, PING, ROOTREQUEST, construct_message,
}, },
peers_refresh::HandshakeHistory, peers_refresh::HandshakeHistory,
registration::{parse_addresses, perform_handshake, register_with_the_server}, registration::{parse_addresses, perform_handshake, register_with_the_server},
server_communication::{generate_id, get_peer_list}, server_communication::{generate_id, get_peer_list},
threads_handling::Worker,
}; };
use std::{ use std::{
io::Error, io::Error,
@@ -35,6 +37,7 @@ pub struct P2PSharedData {
shared_senders: Arc<MultipleSenders>, shared_senders: Arc<MultipleSenders>,
server_name: Arc<Mutex<String>>, server_name: Arc<Mutex<String>>,
handshake_peers: Arc<HandshakeHistory>, handshake_peers: Arc<HandshakeHistory>,
threads: Vec<Worker>,
} }
use bytes::Bytes; use bytes::Bytes;
@@ -53,10 +56,16 @@ impl P2PSharedData {
let shared_cryptopair = Arc::new(crypto_pair); let shared_cryptopair = Arc::new(crypto_pair);
let shared_messageslist = Arc::new(Mutex::new(messages_list)); let shared_messageslist = Arc::new(Mutex::new(messages_list));
let senders = MultipleSenders::new(1, &shared_socket, cmd_tx); let mut threads = Vec::new();
let senders = MultipleSenders::new(1, &shared_socket, cmd_tx, &mut threads);
let shared_senders = Arc::new(senders); let shared_senders = Arc::new(senders);
let server_name = Arc::new(Mutex::new("".to_string())); let server_name = Arc::new(Mutex::new("".to_string()));
let handhsake_peers = Arc::new(HandshakeHistory::new()); let handhsake_peers = Arc::new(HandshakeHistory::new());
let worker = handhsake_peers.update_handshake();
threads.push(worker);
Ok(P2PSharedData { Ok(P2PSharedData {
shared_socket: shared_socket, shared_socket: shared_socket,
shared_cryptopair: shared_cryptopair, shared_cryptopair: shared_cryptopair,
@@ -64,6 +73,7 @@ impl P2PSharedData {
shared_senders: shared_senders, shared_senders: shared_senders,
server_name: server_name, server_name: server_name,
handshake_peers: handhsake_peers, handshake_peers: handhsake_peers,
threads,
}) })
} }
pub fn socket(&self) -> Arc<UdpSocket> { pub fn socket(&self) -> Arc<UdpSocket> {
@@ -110,6 +120,15 @@ impl P2PSharedData {
let mut map = self.shared_messageslist.lock().unwrap(); let mut map = self.shared_messageslist.lock().unwrap();
map.insert(id, evt); map.insert(id, evt);
} }
pub fn threads(&mut self) -> &mut Vec<Worker> {
&mut self.threads
}
pub fn close_threads(&mut self) {
for w in self.threads.drain(..) {
w.stop();
}
}
} }
/// Messages sent to the Network thread by the GUI. /// Messages sent to the Network thread by the GUI.
@@ -118,7 +137,7 @@ pub enum NetworkCommand {
ServerHandshake(String, String), // ServerName ServerHandshake(String, String), // ServerName
FetchPeerList(String), // ServerIP FetchPeerList(String), // ServerIP
RegisterAsPeer(String), RegisterAsPeer(String),
Ping(String), Ping(String, String),
NatTraversal(String, String), NatTraversal(String, String),
ConnectPeer((String, bool)), // IP:PORT ConnectPeer((String, bool)), // IP:PORT
RequestFileTree(String), // peer_id RequestFileTree(String), // peer_id
@@ -139,7 +158,7 @@ pub enum NetworkEvent {
Error(String), Error(String),
PeerConnected(String), PeerConnected(String),
PeerListUpdated(Vec<(String, bool)>), PeerListUpdated(Vec<(String, bool)>),
FileTreeReceived(String, Vec<MerkleNode>), // peer_id, content FileTreeReceived([u8; 32], MerkleNode), // peer_id, content
DataReceived(String, MerkleNode), DataReceived(String, MerkleNode),
FileTreeRootReceived(String, NodeHash), FileTreeRootReceived(String, NodeHash),
HandshakeFailed(), HandshakeFailed(),
@@ -188,8 +207,14 @@ pub fn start_p2p_executor(
match cmd { match cmd {
NetworkCommand::ServerHandshake(username, ip) => { NetworkCommand::ServerHandshake(username, ip) => {
println!("server handshake called"); println!("server handshake called");
if let Some(sd) = shared_data.as_ref() { if let Some(sd) = shared_data.as_mut() {
start_receving_thread(sd, event_tx.clone(), &handshake_clone); start_receving_thread(sd, event_tx.clone(), &handshake_clone);
start_retry_thread(
sd.senders(),
4,
sd.messages_list(),
sd.threads().as_mut(),
);
let res = let res =
perform_handshake(&sd, username, ip, event_tx.clone(), true).await; perform_handshake(&sd, username, ip, event_tx.clone(), true).await;
} else { } else {
@@ -215,24 +240,32 @@ pub fn start_p2p_executor(
}; };
match res { match res {
Some(peerinfo) => { Some(peerinfo) => {
let id = generate_id();
// envoyer un root request // envoyer un root request
let rootrequest = construct_message( let rootrequest = construct_message(
ROOTREQUEST, ROOTREQUEST,
Vec::new(), Vec::new(),
generate_id(), id,
sd.cryptopair_ref(), sd.cryptopair_ref(),
); );
println!("matching");
match rootrequest { match rootrequest {
None => {} None => {}
Some(resp_msg) => { Some(resp_msg) => {
sd.add_message(id, EventType::RootRequest);
println!("msg_sent:{:?}", resp_msg); println!("msg_sent:{:?}", resp_msg);
sd.senders_ref().send_via( sd.senders_ref().add_message_to_retry_queue(
0, resp_msg.clone(),
peerinfo.ip.to_string(),
false,
);
sd.senders_ref().send_dispatch(
resp_msg, resp_msg,
peerinfo.ip.to_string(), peerinfo.ip.to_string(),
false, false,
sd.messages_list_ref(), sd.messages_list(),
); );
} }
} }
@@ -336,7 +369,32 @@ pub fn start_p2p_executor(
NetworkCommand::RegisterAsPeer(_) => { NetworkCommand::RegisterAsPeer(_) => {
println!("[Network] RegisterAsPeer() called"); println!("[Network] RegisterAsPeer() called");
} }
NetworkCommand::Ping(String) => { NetworkCommand::Ping(str, ip) => {
if let Some(sd) = shared_data.as_ref() {
let id = generate_id();
sd.add_message(id, EventType::Ping);
let pingrequest =
construct_message(PING, Vec::new(), id, sd.cryptopair_ref());
let peer_address = get_socket_address(str, ip).await;
match peer_address {
Some(addr) => {
if let Some(ping) = pingrequest {
sd.senders_ref().add_message_to_retry_queue(
ping.clone(),
addr.to_string(),
false,
);
sd.senders_ref().send_dispatch(
ping,
addr.to_string(),
false,
sd.messages_list(),
);
}
}
None => {}
}
}
println!("[Network] Ping() called"); println!("[Network] Ping() called");
} }
NetworkCommand::Disconnect() => { NetworkCommand::Disconnect() => {
@@ -372,19 +430,18 @@ pub fn start_p2p_executor(
let natreq = construct_message( let natreq = construct_message(
NATTRAVERSALREQUEST, NATTRAVERSALREQUEST,
server_addr.to_string().into_bytes(), payload.clone(),
generate_id(), generate_id(),
&sd.cryptopair(), &sd.cryptopair(),
); );
sd.senders_ref().send_via( sd.senders_ref().send_dispatch(
0,
natreq.expect( natreq.expect(
"couldnt construct message nattraversalrequest2", "couldnt construct message nattraversalrequest2",
), ),
server_addr.to_string(), server_addr.to_string(),
false, false,
sd.messages_list_ref(), sd.messages_list(),
); );
} }
None => { None => {

View File

@@ -3,20 +3,31 @@ use crate::{
cryptographic_signature::{ cryptographic_signature::{
CryptographicSignature, get_peer_key, sign_message, verify_signature, CryptographicSignature, get_peer_key, sign_message, verify_signature,
}, },
datum_parsing::parse_received_datum,
messages_channels::MultipleSenders, messages_channels::MultipleSenders,
messages_structure::construct_message, messages_structure::construct_message,
peers_refresh::HandshakeHistory, peers_refresh::HandshakeHistory,
registration, registration,
server_communication::generate_id, server_communication::generate_id,
}; };
use std::{collections::HashMap, net::SocketAddr}; use std::{
collections::HashMap,
net::{Ipv4Addr, SocketAddr},
};
use std::{ use std::{
net::IpAddr, net::IpAddr,
sync::{Arc, Mutex}, sync::{Arc, Mutex},
}; };
// Types of messages that await for a response
#[derive(Debug)]
pub enum EventType { pub enum EventType {
SendRootRequest, HelloThenRootRequest,
Hello,
RootRequest,
Ping,
NatTraversal,
DatumRequest,
} }
const ID: usize = 4; const ID: usize = 4;
@@ -86,80 +97,14 @@ pub fn handle_recevied_message(
None => {} None => {}
Some(resp_msg) => { Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg); println!("msg_sent:{:?}", resp_msg);
senders.send_via( senders.send_dispatch(
0,
resp_msg, resp_msg,
ip.to_string(), ip.to_string(),
is_resp_to_server_handshake, is_resp_to_server_handshake,
messages_list, messages_list.clone(),
); );
} }
} }
// Lock the mutex to access the HashMap
/*let list = messages_list.lock().unwrap();
let eventtype = list.get(&id); // Clone the enum so we can release the lock if needed
match eventtype {
Some(EventType::ServerHelloReply) => {
/*registration::register_ip_addresses(
crypto_pair,
socket_addr.to_string(),
senders,
&messages_list, // Pass the mutable reference inside the lock
546,
);*/
}
Some(_) => print!("Not implemented"),
None => {
let message_type = recevied_message[4];
// Handle handshake
if message_type == 1 {
let mut resp_to_serv = false;
println!("verify the signature");
let parsed_received_message = HandshakeMessage::parse(recevied_message.to_vec());
let received_name = String::from_utf8(parsed_received_message.name).expect("error");
let peer_pubkey = tokio::runtime::Runtime::new()
.unwrap()
.block_on(get_peer_key(&received_name))
.expect("failed to retrieve public key");
if received_name == server_name.to_string() {
resp_to_serv = true;
}
if !verify_signature(peer_pubkey, recevied_message) {
println!(
"incorrect signature from given peer: {}, ignoring message {}",
&received_name, id
);
} else {
// verify if this is a server handshake request
let username_size = crypto_pair.username.len();
let hello_handshake = HandshakeMessage::helloReply(
id as u32,
username_size as u16 + 4,
crypto_pair.username.clone(),
);
//HandshakeMessage::display(&hello_handshake);
let hello_handshake_serialized = hello_handshake.serialize();
let message_signed = sign_message(crypto_pair, &hello_handshake_serialized);
senders.send_via(0, message_signed, socket_addr.to_string(), resp_to_serv);
let mut list = messages_list.lock().expect("Failed to lock messages_list");
match list.get(&id) {
Some(_) => {
list.remove(&id);
}
None => {
list.insert(id, EventType::ServerHelloReply);
}
}
}
}
print!("Message not found for ID: {}", id)
}
}*/
} }
pub fn parse_message( pub fn parse_message(
@@ -188,7 +133,7 @@ pub fn parse_message(
let msg_length = u16::from_be_bytes(length_bytes) as usize; let msg_length = u16::from_be_bytes(length_bytes) as usize;
// verify signature // verify signature
match msgtype { match msgtype {
HELLO | HELLOREPLY | NODATUM | NATTRAVERSALREQUEST | NATTRAVERSALREQUEST2 => { HELLO | HELLOREPLY => {
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength); println!("name received length: {}", ilength);
let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize]; let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
@@ -227,7 +172,7 @@ pub fn parse_message(
} }
} }
} }
ROOTREPLY => { ROOTREPLY | NODATUM | NATTRAVERSALREQUEST | NATTRAVERSALREQUEST2 => {
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength); println!("name received length: {}", ilength);
if let Some(peerinfo) = handhsake_history.get_peer_info_ip(ip.to_string()) { if let Some(peerinfo) = handhsake_history.get_peer_info_ip(ip.to_string()) {
@@ -257,6 +202,20 @@ pub fn parse_message(
} }
// //
// OK // OK
OK => {
let mut guard = messages_list.lock().unwrap();
let res = guard.get(&id);
match res {
Some(ev) => {
println!("{:?}", ev);
let _ = &guard.remove_entry(&id);
println!("message {} retiré de la liste", id);
}
None => {
println!("ping non trouvé");
}
}
}
// //
// rien ? // rien ?
// si NATTRAVERSALREQUEST alors // si NATTRAVERSALREQUEST alors
@@ -276,12 +235,11 @@ pub fn parse_message(
crypto_pair, crypto_pair,
); );
senders.send_via( senders.send_dispatch(
0,
natreq2.expect("couldnt construct message nattraversalrequest2"), natreq2.expect("couldnt construct message nattraversalrequest2"),
address, address,
false, false,
&messages_list, messages_list.clone(),
); );
} }
@@ -291,17 +249,33 @@ pub fn parse_message(
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
let received_address = &received_message[LENGTH..LENGTH + ilength as usize]; let received_address = &received_message[LENGTH..LENGTH + ilength as usize];
let address = String::from_utf8(received_address.to_vec()).expect("wrong name"); println!("received_address:{:?}", received_message);
let addressv4 = IpAddr::V4(Ipv4Addr::from_octets(
received_address[0..4].try_into().expect("incorrect size"),
));
let address = SocketAddr::new(
addressv4,
u16::from_be_bytes(received_address[4..6].try_into().expect("incorrect size")),
);
println!("ip: {}", address);
let pingreq = construct_message(PING, Vec::new(), id, crypto_pair); let pingreq = construct_message(PING, Vec::new(), id, crypto_pair);
senders.send_via( senders.send_dispatch(
0, constructed_message.expect("couldnt construct message ping request"),
pingreq.expect("couldnt construct message ping request"), ip.to_string(),
address,
false, false,
&messages_list, messages_list.clone(),
); );
senders.send_dispatch(
pingreq.expect("couldnt construct message ping request"),
address.to_string(),
false,
messages_list.clone(),
);
constructed_message = None;
} }
// //
// ERROR // ERROR
@@ -325,6 +299,18 @@ pub fn parse_message(
HELLO => { HELLO => {
let mut payload = Vec::new(); let mut payload = Vec::new();
let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH]
.try_into()
.expect("incorrect size"),
);
let received_username =
&received_message[LENGTH + EXTENSIONS..LENGTH + received_length as usize];
handhsake_history.update_peer_info(
ip.to_string(),
String::from_utf8(received_username.to_vec()).expect("invalid conversion"),
);
payload.extend_from_slice(&0u32.to_be_bytes()); payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes()); payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
@@ -350,21 +336,30 @@ pub fn parse_message(
String::from_utf8(received_username.to_vec()).expect("invalid conversion"), String::from_utf8(received_username.to_vec()).expect("invalid conversion"),
); );
// verifie s'il faut renvoyer un root request // verifie s'il faut renvoyer un root request
let guard = messages_list.lock().expect("Échec du verrouillage"); let mut guard = messages_list.lock().expect("Échec du verrouillage");
let res = guard.get(&id); let res = guard.get(&id);
match res { match res {
Some(ev) => { Some(ev) => {
match ev { match ev {
EventType::SendRootRequest => { EventType::HelloThenRootRequest => {
// envoyer la root request // envoyer la root request
let _ = &guard.remove_entry(&id);
println!("message {} retiré de la liste", id);
let rootrequest = construct_message( let rootrequest = construct_message(
ROOTREQUEST, ROOTREQUEST,
Vec::new(), Vec::new(),
generate_id(), generate_id(),
crypto_pair, crypto_pair,
); );
//&guard.insert(, v)
return rootrequest; return rootrequest;
} }
EventType::Hello => {
let _ = &guard.remove_entry(&id);
println!("message {} retiré de la liste", id);
}
_ => {}
} }
} }
None => {} None => {}
@@ -382,15 +377,45 @@ pub fn parse_message(
let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string()); let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string());
match peers_exist { match peers_exist {
Some(peerinfo) => { Some(peerinfo) => {
// envoyer le hash a la gui let mut guard = messages_list.lock().expect("Échec du verrouillage");
let received_hash: NodeHash = received_message[LENGTH..(32 + LENGTH)] let res = guard.get(&id);
.try_into() match res {
.expect("incorrect size"); Some(ev) => {
let res = cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived( match ev {
peerinfo.username.clone(), EventType::RootRequest => {
received_hash, // envoyer la root request
)); let _ = &guard.remove_entry(&id);
println!("file tree sent") println!("message {} retiré de la liste", id);
// envoyer le hash a la gui
let received_hash: NodeHash = received_message
[LENGTH..(32 + LENGTH)]
.try_into()
.expect("incorrect size");
let res =
cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived(
peerinfo.username.clone(),
received_hash,
));
println!("file tree sent");
// envoyer un datum
let mut payload = Vec::new();
payload.extend_from_slice(&received_hash);
let new_id = generate_id();
let datumreqest = construct_message(
DATUMREQUEST,
payload,
new_id,
crypto_pair,
);
constructed_message = datumreqest;
guard.insert(new_id, EventType::DatumRequest);
}
_ => {}
}
}
None => {}
}
} }
None => { None => {
eprintln!("no peers found"); eprintln!("no peers found");
@@ -407,7 +432,35 @@ pub fn parse_message(
// affiche un msg d'erreur // affiche un msg d'erreur
// //
// DATUM // DATUM
// DATUM => {
let mut guard = messages_list.lock().expect("Échec du verrouillage");
let res = guard.get(&id);
match res {
Some(ev) => match ev {
EventType::DatumRequest => {
let _ = &guard.remove_entry(&id);
println!("message {} retiré de la liste", id);
let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH]
.try_into()
.expect("incorrect size"),
);
let received_datum = &received_message[LENGTH..];
let parsed_node =
parse_received_datum(received_datum.to_vec(), received_length as usize);
match parsed_node {
Some(tuple) => {
let _ =
cmd_tx.send(NetworkEvent::FileTreeReceived(tuple.0, tuple.1));
}
None => {}
}
}
_ => {}
},
None => {}
}
}
// parcourt le directory recu ou le big directory et renvoie une DATUMREQUEST pour chaque // parcourt le directory recu ou le big directory et renvoie une DATUMREQUEST pour chaque
// directory ou big directory lu // directory ou big directory lu
// //

View File

@@ -1,9 +1,14 @@
use crossbeam_channel::Receiver;
use tokio::time::sleep;
use crate::P2PSharedData; use crate::P2PSharedData;
use crate::cryptographic_signature::CryptographicSignature; use crate::cryptographic_signature::CryptographicSignature;
use crate::message_handling::EventType; use crate::message_handling::EventType;
use crate::message_handling::handle_recevied_message; use crate::message_handling::handle_recevied_message;
use crate::peers_refresh::HandshakeHistory; use crate::peers_refresh::HandshakeHistory;
use std::collections::HashMap; use crate::threads_handling::Worker;
use std::collections::{HashMap, HashSet};
use std::hash::Hash;
use std::net::SocketAddr; use std::net::SocketAddr;
use std::net::UdpSocket; use std::net::UdpSocket;
use std::sync::{Arc, Mutex}; use std::sync::{Arc, Mutex};
@@ -12,15 +17,12 @@ use std::sync::mpsc::{self, Sender};
use std::thread; use std::thread;
use std::collections::VecDeque; use std::collections::VecDeque;
use std::time::SystemTime;
use std::time::UNIX_EPOCH;
use std::time::{Duration, Instant}; use std::time::{Duration, Instant};
use crate::NetworkEvent; use crate::NetworkEvent;
pub struct MultipleSenders {
senders: Vec<Sender<Message>>,
response_channel: crossbeam_channel::Sender<NetworkEvent>,
}
pub struct Message { pub struct Message {
pub payload: Vec<u8>, pub payload: Vec<u8>,
pub address: String, pub address: String,
@@ -30,175 +32,77 @@ pub struct Message {
struct RetryMessage { struct RetryMessage {
msg: Message, msg: Message,
attempts: u8, attempts: u8,
next_try: Instant, next_try: u64,
}
pub struct MultipleSenders {
sender: crossbeam_channel::Sender<Message>,
receiver: crossbeam_channel::Receiver<Message>,
response_channel: crossbeam_channel::Sender<NetworkEvent>,
retry_queue: Arc<Mutex<VecDeque<RetryMessage>>>,
completed_messages: HashSet<i32>,
} }
impl MultipleSenders { impl MultipleSenders {
/*pub fn new(num_channels: usize, socket: &Arc<UdpSocket>) -> Self {
let mut senders = Vec::new();
// Wrap the socket in an Arc so it can be shared across threads
for i in 0..num_channels {
let (tx, rx) = mpsc::channel::<Message>();
// Clone the Arc (this just bumps the reference count, it doesn't copy the socket)
let sock_clone = Arc::clone(&socket);
senders.push(tx);
thread::spawn(move || {
println!("Canal d'envoi {} prêt", i);
for msg in rx {
// Use the cloned Arc inside the thread
if let Err(e) = sock_clone.send_to(&msg.payload, &msg.address) {
eprintln!(
"Erreur d'envoi sur canal {}: {}, address: {}",
i, e, &msg.address
);
} else {
let message_id: [u8; 4] = msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let message_type = msg.payload[4];
println!(
"Message {0} de type {1} envoyé à {2} par le canal {3}",
id, message_type, msg.address, i
);
}
}
});
}
MultipleSenders { senders }
}*/
pub fn new( pub fn new(
num_channels: usize, num_channels: usize,
socket: &Arc<UdpSocket>, socket: &Arc<UdpSocket>,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
threads: &mut Vec<Worker>,
) -> Self { ) -> Self {
let mut senders = Vec::new(); let (tx1, rx1) = crossbeam_channel::unbounded();
for i in 0..num_channels { for i in 0..num_channels {
let (tx, rx) = mpsc::channel::<Message>();
let sock_clone = Arc::clone(&socket); let sock_clone = Arc::clone(&socket);
let cmd_tx_clone = cmd_tx.clone(); let cmd_tx_clone = cmd_tx.clone();
let rx: Receiver<Message> = rx1.clone();
senders.push(tx); let thread = thread::spawn(move || {
thread::spawn(move || {
println!("Canal d'envoi {} prêt", i); println!("Canal d'envoi {} prêt", i);
let mut queue: VecDeque<RetryMessage> = VecDeque::new();
let max_attempts = 5;
loop { loop {
// Priorité aux messages en attente prêts à être réessayés // Priorité aux messages en attente prêts à être réessayés
if let Some(front) = queue.front() {
if front.next_try <= Instant::now() {
// On prend le message de la queue
let mut item = queue.pop_front().unwrap();
match sock_clone.send_to(&item.msg.payload, &item.msg.address) {
Ok(_) => {
if (&item).msg.is_resp_to_server_handshake {
let res =
cmd_tx_clone.send(NetworkEvent::ConnectedHandshake());
}
let message_id: [u8; 4] =
item.msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let message_type = item.msg.payload[4];
println!(
"Message {0} de type {1} envoyé à {2} par le canal {3} (retry {4})",
id, message_type, item.msg.address, i, item.attempts
);
}
Err(e) => {
item.attempts += 1;
if item.attempts >= max_attempts {
let str = format!(
"Abandon du message après {} tentatives sur canal {}: {}, address: {}",
item.attempts, i, e, item.msg.address
);
if (&item).msg.is_resp_to_server_handshake {
let res = cmd_tx_clone
.send(NetworkEvent::ServerHandshakeFailed(str));
}
} else {
// Backoff exponentiel simple
let backoff = Duration::from_millis(
2000u64.saturating_pow(item.attempts as u32),
);
item.next_try = Instant::now() + backoff;
eprintln!(
"Erreur d'envoi sur canal {}: {}, reprogrammation dans {:?}, tentative {}",
i, e, backoff, item.attempts
);
queue.push_front(item); // remettre en tête pour réessayer plus tôt
}
}
}
continue;
}
}
// Si aucun retry prêt, on bloque sur rx avec timeout court, pour pouvoir traiter les timers // Si aucun retry prêt, on bloque sur rx avec timeout court, pour pouvoir traiter les timers
match rx.recv_timeout(Duration::from_millis(200)) { let msg = rx.recv().unwrap();
Ok(msg) => { match sock_clone.send_to(&msg.payload, &msg.address) {
// On tente d'envoyer immédiatement Ok(_) => {
match sock_clone.send_to(&msg.payload, &msg.address) { if msg.is_resp_to_server_handshake {
Ok(_) => { let res = cmd_tx_clone.send(NetworkEvent::ConnectedHandshake());
if msg.is_resp_to_server_handshake {
let res =
cmd_tx_clone.send(NetworkEvent::ConnectedHandshake());
}
let message_id: [u8; 4] =
msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let message_type = msg.payload[4];
println!(
"Message {0} de type {1} envoyé à {2} par le canal {3}",
id, message_type, msg.address, i
);
}
Err(e) => {
eprintln!(
"Erreur d'envoi initial sur canal {}: {}, address: {} -- mise en queue pour retry",
i, e, &msg.address
);
let retry = RetryMessage {
msg,
attempts: 1,
next_try: Instant::now() + Duration::from_millis(100),
};
queue.push_back(retry);
}
} }
} let message_id: [u8; 4] =
Err(mpsc::RecvTimeoutError::Timeout) => { msg.payload[0..4].try_into().expect("size error");
// Permet de vérifier la queue à nouveau let id = i32::from_be_bytes(message_id);
continue; let message_type = msg.payload[4];
} println!(
Err(mpsc::RecvTimeoutError::Disconnected) => { "Message {0} de type {1} envoyé à {2} par le canal {3}",
// Le sender a été fermé ; vider la queue et sortir id, message_type, msg.address, i
eprintln!( );
"Sender fermé pour le canal {}, fermeture du thread d'envoi", }
i Err(e) => {
eprintln!(
"Erreur d'envoi initial sur canal {}: {}, address: {}",
i, e, &msg.address
); );
break;
} }
} }
} }
}); });
threads.push(Worker::spawn(
thread,
crate::threads_handling::WorkerType::MSGSENDER,
));
} }
MultipleSenders { MultipleSenders {
senders, sender: tx1,
receiver: rx1,
response_channel: cmd_tx.clone(), response_channel: cmd_tx.clone(),
retry_queue: Arc::new(Mutex::new(VecDeque::new())),
completed_messages: HashSet::new(),
} }
} }
/*
/// Envoie un message via un canal spécifique (round-robin ou index précis) /// Envoie un message via un canal spécifique (round-robin ou index précis)
pub fn send_via( pub fn send_via(
&self, &self,
@@ -226,44 +130,136 @@ impl MultipleSenders {
let id = i32::from_be_bytes(message_id); let id = i32::from_be_bytes(message_id);
guard.insert(id, EventType::SendRootRequest); guard.insert(id, EventType::SendRootRequest);
} }
}*/
pub fn send_dispatch(
&self,
data: Vec<u8>,
remote_addr: String,
is_resp_to_server_handshake: bool,
messages_list: Arc<Mutex<HashMap<i32, EventType>>>,
) {
let msg_to_send = Message {
payload: data.clone(),
address: remote_addr,
is_resp_to_server_handshake,
};
let _ = self.sender.send(msg_to_send);
println!("message sent");
} }
/*pub fn start_receving_thread( pub fn add_message_to_retry_queue(
socket: &Arc<UdpSocket>, &self,
messages_list: &Arc<HashMap<i32, EventType>>, data: Vec<u8>,
crypto_pair: &Arc<CryptographicSignature>, remote_addr: String,
socket_addr: SocketAddr, is_resp_to_server_handshake: bool,
senders: &Arc<MultipleSenders>,
) { ) {
let sock_clone = Arc::clone(socket); let msg_to_send = Message {
let cryptopair_clone = Arc::clone(crypto_pair); payload: data.clone(),
let senders_clone = Arc::clone(senders); address: remote_addr,
is_resp_to_server_handshake,
};
let base: u64 = 2;
let attempts = 1;
let backoff = base.saturating_pow(attempts); // 2^1 == 2 seconds
let newretry = RetryMessage {
next_try: SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("clock")
.as_secs()
+ backoff,
msg: msg_to_send,
attempts: attempts as u8,
};
let messages_clone = Arc::clone(messages_list); let mut guard = self.retry_queue.lock().unwrap();
thread::spawn(move || { guard.push_back(newretry);
let mut buf = [0u8; 1024]; }
}
loop { pub fn start_retry_thread(
match sock_clone.recv_from(&mut buf) { senders: Arc<MultipleSenders>,
Ok((amt, src)) => { max_attempts: u8,
handle_recevied_message( messages_list: Arc<Mutex<HashMap<i32, EventType>>>,
&messages_clone, threads: &mut Vec<Worker>,
&buf.to_vec(), ) {
&cryptopair_clone, let thread = thread::spawn(move || {
&socket_addr, loop {
&senders_clone, thread::sleep(Duration::from_millis(100));
); let mut q = senders.retry_queue.lock().unwrap();
println!("Reçu {} octets de {}: {:?}", amt, src, &buf[..amt]); //println!("size of retry thread: {}", q.len());
if let Some(front) = q.pop_front() {
// on verifie si le message a recu une reponse
let message_id: [u8; 4] = front.msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let message_type = front.msg.payload[4];
let guard = messages_list.lock().unwrap();
if guard.contains_key(&id) {
drop(guard);
// si le message est n'a pas encore a etre traité, on le
// remet en queue de liste
if front.next_try
<= SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("clock")
.as_secs()
{
let attempt = front.attempts + 1;
if attempt >= max_attempts {
let str = format!(
"Abandon du message {} de type {} après {} tentatives, address: {}",
id, message_type, front.attempts, front.msg.address
);
println!("{}", str);
if front.msg.is_resp_to_server_handshake {
let res = senders
.response_channel
.send(NetworkEvent::ServerHandshakeFailed(str));
}
} else {
let str = format!(
"Reemission du message {} de type {}, {} tentatives, address: {}",
id, message_type, front.attempts, front.msg.address
);
println!("{}", str);
senders.send_dispatch(
front.msg.payload.clone(),
front.msg.address.clone(),
front.msg.is_resp_to_server_handshake,
messages_list.clone(),
);
let base: u64 = 2;
let backoff = base.saturating_pow(attempt as u32); // 2^1 == 2 seconds
let newretry = RetryMessage {
next_try: SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("clock")
.as_secs()
+ backoff,
msg: front.msg,
attempts: attempt,
};
q.push_back(newretry); // remettre en tête pour réessayer plus tôt
}
} else {
q.push_back(front); // remettre en tête pour réessayer plus tôt
} }
Err(e) => eprintln!("Erreur de réception: {}", e),
} }
} }
}); }
}*/ });
threads.push(Worker::spawn(
thread,
crate::threads_handling::WorkerType::MSGRETRY,
));
} }
pub fn start_receving_thread( pub fn start_receving_thread(
shared_data: &P2PSharedData, shared_data: &mut P2PSharedData,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
handshake_history: &Arc<Mutex<HandshakeHistory>>, handshake_history: &Arc<Mutex<HandshakeHistory>>,
) { ) {
@@ -274,7 +270,7 @@ pub fn start_receving_thread(
let servername_clone = shared_data.servername(); let servername_clone = shared_data.servername();
let handshake_clone = handshake_history.clone(); let handshake_clone = handshake_history.clone();
thread::spawn(move || { let thread = thread::spawn(move || {
let mut buf = [0u8; 1024]; let mut buf = [0u8; 1024];
loop { loop {
match sock_clone.recv_from(&mut buf) { match sock_clone.recv_from(&mut buf) {
@@ -297,4 +293,8 @@ pub fn start_receving_thread(
} }
} }
}); });
shared_data.threads.push(Worker::spawn(
thread,
crate::threads_handling::WorkerType::MSGRECEPTION,
));
} }

View File

@@ -48,18 +48,23 @@ pub fn construct_message(
return Some(message); return Some(message);
} }
ERROR | DATUMREQUEST => { ERROR | DATUMREQUEST => {
message.extend_from_slice(&payload.len().to_be_bytes()); let a = payload.len() as u16;
println!("payload size:{}", a);
message.extend_from_slice(&a.to_be_bytes());
message.extend_from_slice(&payload); message.extend_from_slice(&payload);
return Some(message); return Some(message);
} }
ROOTREPLY | NODATUM | DATUM | NATTRAVERSALREQUEST => { ROOTREPLY | NODATUM | DATUM | NATTRAVERSALREQUEST => {
println!("payload:{:?}", &payload); println!("payload:{:?}", &payload);
message.extend_from_slice(&(payload.len() as u16).to_be_bytes()); let a = payload.len() as u16;
println!("payload size:{}", a);
message.extend_from_slice(&a.to_be_bytes());
message.extend_from_slice(&payload); message.extend_from_slice(&payload);
println!("payload:{:?}", &message); println!("payload:{:?}", &message);
let signature = sign_message(crypto_pair, &message); let signature = sign_message(crypto_pair, &message);
message.extend_from_slice(&signature); message.extend_from_slice(&signature);
return Some(message); println!("message_to_send_len:{}", &message.len());
return Some(signature);
} }
_ => {} _ => {}

View File

@@ -7,11 +7,11 @@ use std::{
ops::Add, ops::Add,
process::Command, process::Command,
sync::{Arc, Mutex}, sync::{Arc, Mutex},
thread, thread::{self, JoinHandle},
time::{self, Duration, SystemTime}, time::{self, Duration, SystemTime},
}; };
use crate::NetworkEvent; use crate::{NetworkEvent, threads_handling::Worker};
use crate::{ use crate::{
P2PSharedData, construct_message, generate_id, messages_structure, P2PSharedData, construct_message, generate_id, messages_structure,
registration::perform_handshake, registration::perform_handshake,
@@ -65,21 +65,17 @@ impl HandshakeHistory {
self.ip_k_peerinfo_v.get(&ip).clone() self.ip_k_peerinfo_v.get(&ip).clone()
} }
pub fn update_handshake(&self) { pub fn update_handshake(&self) -> Worker {
// clone the map so we own it (cheap if PeerInfo is Clone)
let map_clone: Arc<HashMap<String, PeerInfo>> = let map_clone: Arc<HashMap<String, PeerInfo>> =
Arc::new(self.username_k_peerinfo_v.clone()); Arc::new(self.username_k_peerinfo_v.clone());
//let map_ip_clone: Arc<HashMap<String, PeerInfo>> = Arc::new(self.ip_k_peerinfo_v.clone());
let map_for_thread = Arc::clone(&map_clone); let map_for_thread = Arc::clone(&map_clone);
thread::spawn(move || { let handle = thread::spawn(move || {
loop { loop {
// Arc<HashMap<..>> derefs to &HashMap so these reads work for (peer, peerinfo) in map_for_thread.iter() {}
for (peer, peerinfo) in map_for_thread.iter() {
// send ping to peerinfo
}
thread::sleep(Duration::from_secs(10)); thread::sleep(Duration::from_secs(10));
} }
}); });
Worker::spawn(handle, crate::threads_handling::WorkerType::PING)
} }
pub fn update_peer_info(&mut self, ip: String, username: String) { pub fn update_peer_info(&mut self, ip: String, username: String) {

View File

@@ -60,7 +60,7 @@ pub async fn perform_handshake(
println!("username: {}, ip: {}", username.clone(), ip.clone()); println!("username: {}, ip: {}", username.clone(), ip.clone());
let crypto_pair = sd.cryptopair_ref(); let crypto_pair = sd.cryptopair_ref();
let senders = sd.senders_ref(); let senders = sd.senders_ref();
let messages_list = sd.messages_list_ref();
let id = generate_id(); let id = generate_id();
let server_addr_query = get_socket_address(username.clone(), ip.clone()); let server_addr_query = get_socket_address(username.clone(), ip.clone());
match server_addr_query.await { match server_addr_query.await {
@@ -73,12 +73,11 @@ pub async fn perform_handshake(
let hello_handshake = construct_message(1, payload, id, crypto_pair); let hello_handshake = construct_message(1, payload, id, crypto_pair);
match hello_handshake { match hello_handshake {
Some(handshake_message) => { Some(handshake_message) => {
senders.send_via( senders.send_dispatch(
0,
handshake_message, handshake_message,
sockaddr_bytes.to_string(), sockaddr_bytes.to_string(),
is_server_handshake, is_server_handshake,
messages_list, sd.messages_list(),
); );
} }
None => {} None => {}

View File

@@ -0,0 +1,35 @@
use std::sync::{
Arc,
atomic::{AtomicBool, Ordering},
};
use std::thread::JoinHandle;
pub enum WorkerType {
MSGRECEPTION,
MSGSENDER,
PING,
MSGRETRY,
}
pub struct Worker {
thread: Option<JoinHandle<()>>,
stop: Arc<AtomicBool>,
workertype: WorkerType,
}
impl Worker {
pub fn spawn(thread: JoinHandle<()>, workertype: WorkerType) -> Self {
Worker {
stop: Arc::new(AtomicBool::new(false)),
thread: Some(thread),
workertype,
}
}
pub fn stop(mut self) {
self.stop.store(true, Ordering::Relaxed);
if let Some(h) = self.thread.take() {
let _ = h.join();
}
}
}