structure

This commit is contained in:
enx01
2025-11-27 00:03:29 +01:00
parent 8c8dbadf18
commit f681b94d5e
22 changed files with 4880 additions and 157 deletions

305
client-network/src/data.rs Normal file
View File

@@ -0,0 +1,305 @@
use std::collections::HashMap;
use std::hash::{DefaultHasher, Hash, Hasher};
use rand::{rng, Rng};
// --- Constants ---
const MAX_CHUNK_DATA_SIZE: usize = 1024;
const MAX_DIRECTORY_ENTRIES: usize = 16;
const MAX_BIG_CHILDREN: usize = 32;
const MIN_BIG_CHILDREN: usize = 2;
const FILENAME_HASH_SIZE: usize = 32;
const DIRECTORY_ENTRY_SIZE: usize = FILENAME_HASH_SIZE * 2; // 64 bytes
fn dummy_hash(data: &[u8]) -> NodeHash {
let mut hasher = DefaultHasher::new();
data.hash(&mut hasher);
let hash_u64 = hasher.finish();
let mut hash_array = [0u8; FILENAME_HASH_SIZE];
// Simple way to spread a 64-bit hash across 32 bytes for a unique-ish ID
for i in 0..8 {
hash_array[i] = (hash_u64 >> (i * 8)) as u8;
}
hash_array // The rest remains 0, satisfying the 32-byte requirement
}
fn generate_random_filename() -> [u8; FILENAME_HASH_SIZE] {
let mut rng = rand::rng();
let mut filename_bytes = [0; FILENAME_HASH_SIZE];
// Generate a random length for the base name
let name_len = rng.random_range(5..21);
// Generate random alphanumeric characters
for i in 0..name_len {
let char_code = rng.random_range(97..123); // 'a' through 'z'
if i < FILENAME_HASH_SIZE {
filename_bytes[i] = char_code as u8;
}
}
// Append a common extension
let ext = if rng.random_bool(0.5) { ".txt" } else { ".dat" };
let ext_bytes = ext.as_bytes();
let start_index = name_len.min(FILENAME_HASH_SIZE - ext_bytes.len());
if start_index < FILENAME_HASH_SIZE {
filename_bytes[start_index..(start_index + ext_bytes.len())].copy_from_slice(ext_bytes);
}
filename_bytes
}
pub type NodeHash = [u8; FILENAME_HASH_SIZE];
pub fn node_hash_to_hex_string(hash: &NodeHash) -> String {
hash.iter()
.map(|b| format!("{:02x}", b))
.collect()
}
#[repr(u8)]
#[derive(Debug, Clone)]
pub enum MerkleNode {
// up to 1024 bytes of raw data.
Chunk(ChunkNode) = 0,
// 0 to 16 directory entries.
Directory(DirectoryNode) = 1,
// list of 2 to 32 hashes pointing to Chunk or Big nodes.
Big(BigNode) = 3,
// list of 2 to 32 hashes pointing to Directory or BigDirectory nodes.
BigDirectory(BigDirectoryNode) = 4,
}
fn generate_random_file_node(storage: &mut HashMap<NodeHash, MerkleNode>) -> Result<NodeHash, String> {
let mut rng = rng();
let is_big = rng.random_bool(0.2); // 20% chance of being a big file
if !is_big {
// Generate a simple Chunk Node
let node = MerkleNode::Chunk(ChunkNode::new_random());
let hash = dummy_hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a Big Node (a file composed of chunks)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(8)); // Limit complexity
let mut children_hashes = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Chunk or Big; for simplicity, we only generate Chunk children here.
let chunk_node = MerkleNode::Chunk(ChunkNode::new_random());
let chunk_hash = dummy_hash(&chunk_node.serialize());
storage.insert(chunk_hash, chunk_node);
children_hashes.push(chunk_hash);
}
let node = MerkleNode::Big(BigNode::new(children_hashes)?);
let hash = dummy_hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
fn generate_random_directory_node(
depth: u32,
max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>
) -> Result<NodeHash, String> {
let mut rng = rng();
let current_depth = depth + 1;
let is_big_dir = rng.random_bool(0.3) && current_depth < max_depth;
if !is_big_dir || current_depth >= max_depth {
// Generate a simple Directory Node (leaf level directory)
let num_entries = rng.random_range(1..=MAX_DIRECTORY_ENTRIES.min(5)); // Limit directory size for testing
let mut entries = Vec::with_capacity(num_entries);
for _ in 0..num_entries {
if rng.random_bool(0.7) {
// 70% chance of creating a file (Chunk/Big)
let file_hash = generate_random_file_node(storage)?;
let entry = DirectoryEntry {
filename: generate_random_filename(),
content_hash: file_hash,
};
entries.push(entry);
} else if current_depth < max_depth {
// 30% chance of creating a subdirectory
let dir_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
// Create a basic directory entry name
let mut filename_bytes = [0; 32];
let subdir_name = format!("dir_{}", current_depth);
filename_bytes[..subdir_name.len()].copy_from_slice(subdir_name.as_bytes());
let entry = DirectoryEntry {
filename: filename_bytes,
content_hash: dir_hash,
};
entries.push(entry);
}
}
let node = MerkleNode::Directory(DirectoryNode::new(entries)?);
let hash = dummy_hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a BigDirectory Node (internal directory structure)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(4)); // Limit children count
let mut children = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Directory or BigDirectory
let child_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
children.push(child_hash);
}
let node = MerkleNode::BigDirectory(BigDirectoryNode::new(children)?);
let hash = dummy_hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
#[derive(Debug, Clone)]
pub struct ChunkNode {
pub data: Vec<u8>,
}
impl ChunkNode {
pub fn new(data: Vec<u8>) -> Result<Self, String> {
if data.len() > MAX_CHUNK_DATA_SIZE {
return Err(format!("Chunk data exceeds {} bytes", data.len()));
}
Ok(ChunkNode { data })
}
pub fn new_random() -> Self {
let mut rng = rand::rng();
// Determine a random length between 1 and MAX_CHUNK_DATA_SIZE (inclusive).
// Using +1 ensures the range is up to 1024.
let random_len = rng.random_range(1..=MAX_CHUNK_DATA_SIZE);
// Initialize a vector with the random length
let mut data = vec![0u8; random_len];
// Fill the vector with random bytes
rng.fill(&mut data[..]);
// Since we generated the length based on MAX_CHUNK_DATA_SIZE,
// this is guaranteed to be valid and doesn't need to return a Result.
ChunkNode { data }
}
}
// Helper struct
#[derive(Debug, Clone)]
pub struct DirectoryEntry {
pub filename: [u8; FILENAME_HASH_SIZE],
pub content_hash: NodeHash,
}
#[derive(Debug, Clone)]
pub struct DirectoryNode {
pub entries: Vec<DirectoryEntry>,
}
impl DirectoryNode {
pub fn new(entries: Vec<DirectoryEntry>) -> Result<Self, String> {
if entries.len() > MAX_DIRECTORY_ENTRIES {
return Err(format!("Directory exceeds {} bytes", entries.len()));
}
Ok(DirectoryNode { entries })
}
}
#[derive(Debug, Clone)]
pub struct BigNode {
pub children_hashes: Vec<NodeHash>,
}
impl BigNode {
pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!(
"Big node must have between {} and {} children, found {}",
MIN_BIG_CHILDREN, MAX_BIG_CHILDREN, n
));
}
Ok(BigNode { children_hashes })
}
}
#[derive(Debug, Clone)]
pub struct BigDirectoryNode {
pub children_hashes: Vec<NodeHash>,
}
impl BigDirectoryNode {
pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!(
"BigDirectory node must have between {} and {} children, found {}",
MIN_BIG_CHILDREN, MAX_BIG_CHILDREN, n
));
}
Ok(BigDirectoryNode { children_hashes })
}
}
impl MerkleNode {
pub fn get_type_byte(&self) -> u8 {
match self {
MerkleNode::Chunk(_) => 0,
MerkleNode::Directory(_) => 1,
MerkleNode::Big(_) => 3,
MerkleNode::BigDirectory(_) => 4,
}
}
pub fn serialize(&self) -> Vec<u8> {
let mut bytes = Vec::new();
// 1. Add the type byte
bytes.push(self.get_type_byte());
// 2. Add the node-specific data
match self {
MerkleNode::Chunk(node) => {
bytes.extend_from_slice(&node.data);
}
MerkleNode::Directory(node) => {
// The data is the sequence of directory entries
for entry in &node.entries {
bytes.extend_from_slice(&entry.filename);
bytes.extend_from_slice(&entry.content_hash);
}
}
MerkleNode::Big(node) => {
// The data is the list of child hashes
for hash in &node.children_hashes {
bytes.extend_from_slice(hash);
}
}
MerkleNode::BigDirectory(node) => {
// The data is the list of child hashes
for hash in &node.children_hashes {
bytes.extend_from_slice(hash);
}
}
}
bytes
}
pub fn generate_random_tree(max_depth: u32) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new();
// Start tree generation from the root directory at depth 0
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage))
}
}

85
client-network/src/lib.rs Normal file
View File

@@ -0,0 +1,85 @@
mod data;
/// Messages sent to the Network thread by the GUI.
pub enum NetworkCommand {
ConnectPeer(String), // e.g., IP:PORT
RequestFileTree(String), // e.g., peer_id
RequestDirectoryContent(String, String),
RequestChunk(String, String),
// ...
}
/// Messages sent to the GUI by the Network thread.
pub enum NetworkEvent {
PeerConnected(String),
PeerListUpdated(Vec<String>),
FileTreeReceived(String, Vec<MerkleNode>), // peer_id, content
DataReceived(String, MerkleNode),
FileTreeRootReceived(String, String),
// ...
}
use crossbeam_channel::{Receiver, Sender};
pub use crate::data::*;
use sha2::{Digest, Sha256};
pub fn calculate_chunk_id(data: &[u8]) -> String {
// 1. Create a new Sha256 hasher instance
let mut hasher = Sha256::new();
// 2. Write the input data into the hasher
hasher.update(data);
// 3. Finalize the hash computation and get the resulting bytes
let hash_bytes = hasher.finalize();
// 4. Convert the hash bytes (array of u8) into a hexadecimal string
// This is the common, human-readable format for cryptographic IDs.
hex::encode(hash_bytes)
}
pub fn start_p2p_executor(
cmd_rx: Receiver<NetworkCommand>,
event_tx: Sender<NetworkEvent>,
) -> tokio::task::JoinHandle<()> {
// Use tokio to spawn the asynchronous networking logic
tokio::task::spawn(async move {
// P2P/Networking Setup goes here
println!("Network executor started.");
// Main network loop
loop {
// Check for commands from the GUI
if let Ok(cmd) = cmd_rx.try_recv() {
match cmd {
NetworkCommand::ConnectPeer(addr) => {
println!("Attempting to connect to: {}", addr);
// Network logic to connect...
// If successful, send an event back:
// event_tx.send(NetworkEvent::PeerConnected(addr)).unwrap();
},
NetworkCommand::RequestFileTree(_) => todo!(),
// ... handle other commands
NetworkCommand::RequestDirectoryContent(_, _) => todo!(),
NetworkCommand::RequestChunk(_, _) => todo!(),
}
}
// 2. Poll network for new events (e.g., an incoming connection)
// ...
// When a new peer is found:
// event_tx.send(NetworkEvent::PeerConnected("NewPeerID".to_string())).unwrap();
// Avoid spinning too fast
tokio::time::sleep(std::time::Duration::from_millis(50)).await;
}
})
}