28 Commits

Author SHA1 Message Date
Tiago Batista Cardoso
6b3cbbe557 some modifications 2026-01-16 12:33:21 +01:00
TIBERGHIEN corentin
14fa256f9c wip nattraversal 2026-01-16 11:19:20 +01:00
Tiago Batista Cardoso
29c67e340c update 2026-01-16 11:18:45 +01:00
Tiago Batista Cardoso
be7430fdc6 peer address in nat traversal 2026-01-16 11:18:44 +01:00
Tiago Batista Cardoso
60145f279a implementation 2026-01-16 11:15:56 +01:00
Tiago Batista Cardoso
003d55bd75 thing 2026-01-16 10:55:56 +01:00
b61e1b1036 Merge pull request 'tmp' (#2) from tmp into master
Reviewed-on: #2
2026-01-16 09:54:46 +00:00
TIBERGHIEN corentin
c852c5bb4a root request 2026-01-13 17:13:35 +01:00
98fcc1a0b2 wip handling root request 2026-01-13 02:32:48 +01:00
8e279d9e24 wip datum 2026-01-11 22:12:08 +01:00
0c601a76b8 Merge pull request 'tmp' (#1) from tmp into master
Reviewed-on: #1
2026-01-11 20:58:30 +00:00
TIBERGHIEN corentin
92f38c9c12 fix name length issue 2026-01-10 20:34:51 +01:00
TIBERGHIEN corentin
489669b93d wip messages creation & handling 2026-01-09 20:09:39 +01:00
9fc33804d0 manage handshake wiip 2026-01-09 01:03:40 +01:00
TIBERGHIEN corentin
cd2f87cb81 wip 2026-01-08 19:12:07 +01:00
dc1767abe4 messages rewrite 2026-01-07 23:34:44 +01:00
f51b8e999c server handshake handling 2026-01-05 02:48:58 +01:00
c748dfa71d retry sending messages 2026-01-04 01:35:51 +01:00
74f30f2c7f server handshake gui 2026-01-02 23:21:50 +01:00
1914c68c9f registration put 2026-01-02 22:27:26 +01:00
1d72d7500a graphical stuff 2026-01-02 17:23:33 +01:00
c804695725 signature verification 2025-12-31 19:40:25 +01:00
cc09fab16d message handling and serv registration 2025-12-30 20:18:18 +01:00
ced0c992e7 wip messages handling 2025-12-23 17:05:29 +01:00
1844037488 code cleanup and documentation 2025-12-19 23:08:02 +01:00
3fa81e9ee3 signature extension 2025-12-18 14:06:02 +01:00
6ac06ccfe5 wip registering ip addresses 2025-12-18 00:34:57 +01:00
e902070c82 wip structures and message signature 2025-12-17 14:09:51 +01:00
15 changed files with 2293 additions and 223 deletions

BIN
README.md

Binary file not shown.

View File

@@ -1,30 +1,36 @@
use client_network::{
MerkleNode, MerkleTree, NetworkCommand, NetworkEvent, NodeHash, filename_to_string,
ChunkNode, MerkleNode, MerkleTree, NetworkCommand, NetworkEvent, NodeHash, filename_to_string,
node_hash_to_hex_string,
};
use crossbeam_channel::{Receiver, Sender};
use egui::{
Align, Align2, Button, CentralPanel, CollapsingHeader, Context, Id, LayerId, Layout, Order,
Popup, ScrollArea, SidePanel, TopBottomPanel, Ui, ViewportCommand,
Popup, ScrollArea, SidePanel, TextStyle, TopBottomPanel, Ui, ViewportCommand,
};
use std::collections::HashMap;
use std::{collections::HashMap, fmt::format};
enum ServerStatus {
Loading,
NotConnected,
Connected,
ConnectedHandshake,
}
// --- Main Application Struct ---
pub struct P2PClientApp {
remaining: std::time::Duration, // temps restant
last_update: std::time::Instant, // pour calculer delta
timer_started: bool,
// Communication channels
network_cmd_tx: Sender<NetworkCommand>,
network_event_rx: Receiver<NetworkEvent>,
// GUI State
status_message: String,
known_peers: Vec<String>,
known_peers: Vec<(String, bool)>,
connect_address_input: String,
connected_address: String,
connect_name_input: String,
// Key: Parent Directory Hash (String), Value: List of children FileNode
loaded_fs: HashMap<String, MerkleTree>,
@@ -33,33 +39,70 @@ pub struct P2PClientApp {
active_peer: Option<String>,
server_status: ServerStatus,
show_network_popup: bool, // gérer selon besoin
error_message: Option<String>, // Some(message) -> afficher, None -> rien
//
active_server: String,
}
impl P2PClientApp {
pub fn new(cmd_tx: Sender<NetworkCommand>, event_rx: Receiver<NetworkEvent>) -> Self {
let (root_hash, tree_content) = MerkleNode::generate_base_tree();
//let (root_hash, tree_content) = MerkleNode::generate_base_tree();
let mut loaded_fs = HashMap::new();
let tree = MerkleTree::new(tree_content, root_hash);
loaded_fs.insert("bob".to_string(), tree);
//let tree = MerkleTree::new(tree_content, root_hash);
//loaded_fs.insert("bob".to_string(), tree);
Self {
remaining: std::time::Duration::from_secs(0),
timer_started: false,
last_update: std::time::Instant::now(),
network_cmd_tx: cmd_tx,
network_event_rx: event_rx,
status_message: "Client Initialized. Awaiting network status...".to_string(),
known_peers: vec!["bob".to_string()],
connect_address_input: "127.0.0.1:8080".to_string(),
known_peers: vec![("bob".to_string(), true)],
connect_address_input: "https://jch.irif.fr:8443".to_string(),
connected_address: "".to_string(),
loaded_fs,
active_peer: None,
server_status: ServerStatus::Loading,
server_status: ServerStatus::NotConnected,
show_network_popup: false,
error_message: None,
connect_name_input: "bob".to_string(),
active_server: "".to_string(),
}
}
pub fn show_error(&mut self, msg: impl Into<String>) {
self.error_message = Some(msg.into());
}
pub fn clear_error(&mut self) {
self.error_message = None;
}
}
// --- eframe::App Trait Implementation ---
impl eframe::App for P2PClientApp {
fn update(&mut self, ctx: &Context, _frame: &mut eframe::Frame) {
if matches!(self.server_status, ServerStatus::Connected) && !self.timer_started {
self.remaining = std::time::Duration::from_secs(30 * 60);
self.last_update = std::time::Instant::now();
self.timer_started = true;
}
// in update (every frame)
let now = std::time::Instant::now();
let delta = now.saturating_duration_since(self.last_update);
self.last_update = now;
if matches!(self.server_status, ServerStatus::Connected)
&& self.remaining > std::time::Duration::ZERO
{
self.remaining = self.remaining.saturating_sub(delta);
}
// 1. Process incoming Network Events
// We poll the channel and update the GUI state for every event received.
while let Ok(event) = self.network_event_rx.try_recv() {
@@ -68,42 +111,82 @@ impl eframe::App for P2PClientApp {
todo!();
self.status_message = format!("✅ Peer connected: {}", addr);
if !self.known_peers.contains(&addr) {
self.known_peers.push(addr);
if !self.known_peers.contains(&(addr, true)) {
self.known_peers.push((addr, true));
}
}
NetworkEvent::PeerListUpdated(peers) => {
todo!();
//todo!();
self.known_peers = peers;
}
NetworkEvent::FileTreeReceived(_peer_id, _) => {
todo!();
// self.loaded_tree_nodes.insert(_peer_id, tree);
self.status_message = "🔄 File tree updated successfully.".to_string();
//self.loaded_tree_nodes.insert(_peer_id, tree);
//self.status_message = "🔄 File tree updated successfully.".to_string();
}
NetworkEvent::FileTreeRootReceived(peer_id, root_hash) => {
todo!();
// todo!();
// self.status_message = format!("🔄 Received Merkle Root from {}: {}", peer_id, &root_hash[..8]);
//
//
// self.active_peer_id = Some(peer_id.clone());
//
//
// // Request the content of the root directory immediately
// let _ = self.network_cmd_tx.send(NetworkCommand::RequestDirectoryContent(
// peer_id,
// root_hash,
// ));
/*self.status_message = format!(
"🔄 Received Merkle Root from {}: {}",
peer_id,
&root_hash[..8]
);*/
if let Ok(chunknode) = ChunkNode::new(Vec::new()) {
let mut data_map: HashMap<NodeHash, MerkleNode> = HashMap::new();
data_map.insert(root_hash, MerkleNode::Chunk(chunknode));
let tree = MerkleTree {
data: data_map,
root: root_hash,
};
match &self.active_peer {
Some(activepeer) => {
self.loaded_fs.insert(activepeer.clone(), tree);
}
None => {}
}
println!("tree created");
}
//self.active_peer_id = Some(peer_id.clone());
// Request the content of the root directory immediately
/*let _ = self
.network_cmd_tx
.send(NetworkCommand::RequestDirectoryContent(peer_id, root_hash));*/
}
NetworkEvent::Connected() => {
NetworkEvent::Connected(ip) => {
self.server_status = ServerStatus::Connected;
self.connected_address = ip.clone();
let _ = self.network_cmd_tx.send(NetworkCommand::FetchPeerList(
self.connected_address.clone(),
));
}
NetworkEvent::ConnectedHandshake() => {
self.server_status = ServerStatus::ConnectedHandshake;
}
NetworkEvent::Disconnected() => {
self.active_server = "".to_string();
self.connected_address = "".to_string();
self.known_peers.clear();
self.server_status = ServerStatus::NotConnected;
}
NetworkEvent::Error(err) => {
self.show_error(err);
}
NetworkEvent::Disconnected() => todo!(),
NetworkEvent::Error() => todo!(),
NetworkEvent::DataReceived(_, merkle_node) => todo!(),
NetworkEvent::HandshakeFailed() => {}
NetworkEvent::ServerHandshakeFailed(err) => {
self.active_server = "".to_string();
self.server_status = ServerStatus::NotConnected;
let err_msg = format!("Failed to connect to the server: {}", err);
self.show_error(err_msg);
let res = self.network_cmd_tx.send(NetworkCommand::ResetServerPeer());
}
}
}
@@ -122,19 +205,104 @@ impl eframe::App for P2PClientApp {
});
ui.menu_button("Network", |ui| {
ui.horizontal(|ui| {
ui.label("Server IP:");
ui.text_edit_singleline(&mut self.connect_address_input);
match self.server_status {
ServerStatus::Connected | ServerStatus::ConnectedHandshake => {
let desired = egui::vec2(300.0, 0.0); // width 300, auto-height if 0
ui.set_min_size(desired);
ui.vertical(|ui| {
if ui.button("Disconnect").clicked() {
println!("Disconnecting...");
let _ = self.network_cmd_tx.send(NetworkCommand::Disconnect());
self.server_status = ServerStatus::NotConnected;
self.remaining = std::time::Duration::from_secs(0);
self.timer_started = false;
ui.close();
}
});
}
ServerStatus::NotConnected => {
let desired = egui::vec2(0.0, 0.0); // width 300, auto-height if 0
ui.set_min_size(desired);
ui.vertical(|ui| {
ui.horizontal(|ui| {
ui.label("Server IP:");
ui.text_edit_singleline(&mut self.connect_address_input);
});
ui.horizontal(|ui| {
ui.label("Name:");
ui.text_edit_singleline(&mut self.connect_name_input);
});
if ui.button("Connect").clicked() {
let addr = self.connect_address_input.clone();
let name = self.connect_name_input.clone();
let _ = self
.network_cmd_tx
.send(NetworkCommand::ConnectToServerPut(addr, name));
self.server_status = ServerStatus::Loading;
ui.close();
}
});
}
_ => {}
}
/* ui.horizontal(|ui| {
ui.label("Server peer name:");
ui.text_edit_singleline(&mut self.connect_server_name_input);
if ui.button("Connect").clicked() {
let addr = self.connect_address_input.clone();
let serv_name = self.connect_server_name_input.clone();
let _ = self
.network_cmd_tx
.send(NetworkCommand::ConnectToServer(addr));
.send(NetworkCommand::ConnectToServer(addr, serv_name));
self.server_status = ServerStatus::Loading;
ui.close();
}
});
});*/
});
// état
/*if ui.button("Network").clicked() {
self.show_network_popup = true;
}*/
/*if self.show_network_popup {
egui::Window::new("Network")
.collapsible(false)
.resizable(false)
.show(ctx, |ui| {
ui.horizontal_wrapped(|ui| {
ui.with_layout(
egui::Layout::right_to_left(egui::Align::TOP),
|ui| {
if ui.button("✕").clicked() {
self.show_network_popup = false;
}
},
);
});
ui.horizontal(|ui| {
ui.label("Server IP:");
ui.text_edit_singleline(&mut self.connect_address_input);
});
ui.horizontal(|ui| {
ui.label("Server peer name:");
ui.text_edit_singleline(&mut self.connect_server_name_input);
if ui.button("Connect").clicked() {
// envoyer commande...
let addr = self.connect_address_input.clone();
let serv_name = self.connect_server_name_input.clone();
let _ = self
.network_cmd_tx
.send(NetworkCommand::ConnectToServer(addr, serv_name));
self.server_status = ServerStatus::Loading;
self.show_network_popup = false;
}
});
});
}*/
});
});
@@ -145,14 +313,22 @@ impl eframe::App for P2PClientApp {
ui.spinner();
}
ServerStatus::Connected => {
ui.label("📡");
ui.label("Registered but no server peer chosen...");
}
ServerStatus::NotConnected => {
ui.label("No connection..");
}
ServerStatus::ConnectedHandshake => {
let str = format!("📡");
ui.label(str);
}
}
ui.add_space(ui.available_width() - 30.0);
ui.label("30:00");
// formater mm:ss
let secs = self.remaining.as_secs();
let minutes = secs / 60;
let seconds = secs % 60;
ui.label(format!("{:02}:{:02}", minutes, seconds));
});
});
@@ -164,8 +340,9 @@ impl eframe::App for P2PClientApp {
ui.heading("🌐 Known Peers");
ui.add_space(20.0);
if ui.button("🔄").clicked() {
println!("addr:{}", self.connected_address.clone());
let res = self.network_cmd_tx.send(NetworkCommand::FetchPeerList(
self.connect_address_input.clone(),
self.connected_address.clone(),
));
if let Some(error) = res.err() {
println!(
@@ -184,26 +361,75 @@ impl eframe::App for P2PClientApp {
} else {
for peer in &self.known_peers {
let is_active =
self.active_peer.as_ref().map_or(false, |id| id == peer); // if peer.id == self.active_peer_id
self.active_peer.as_ref().map_or(false, |id| id == &peer.0); // if peer.id == self.active_peer_id
if ui
.selectable_label(is_active, format!("{}", peer))
.clicked()
{
let selectable;
if &self.active_server == &peer.0 {
selectable =
ui.selectable_label(is_active, format!("{} 📡 🌀", peer.0))
} else {
selectable = ui.selectable_label(is_active, format!("{}", peer.0));
}
if selectable.clicked() {
// switch to displaying this peer's tree
self.active_peer = Some(peer.clone());
self.active_peer = Some(peer.0.clone());
// Request root content if not loaded
if !self
.loaded_fs
.contains_key(self.active_peer.as_ref().unwrap())
{
todo!();
// let _ = self.network_cmd_tx.send(NetworkCommand::RequestDirectoryContent(
// peer.clone(),
// peer.clone(),
// ));
//todo!();
let _ = self.network_cmd_tx.send(NetworkCommand::Discover(
peer.0.clone(),
"root".to_string(),
self.connected_address.clone(),
));
}
}
selectable.context_menu(|ui| {
// ... action
match self.server_status {
ServerStatus::Connected => {
if ui
.button("Utiliser le peer en tant que serveur")
.clicked()
{
self.active_server = peer.0.to_string();
let res = self.network_cmd_tx.send(
NetworkCommand::ServerHandshake(
peer.0.to_string(),
self.connected_address.clone(),
),
);
}
}
_ => {}
}
if ui.button("Send Ping").clicked() {
let res = self
.network_cmd_tx
.send(NetworkCommand::Ping(peer.0.to_string()));
}
if ui.button("Send Nat Traversal Request").clicked() {
match self.network_cmd_tx.send(NetworkCommand::NatTraversal(
peer.0.to_string(),
self.connected_address.clone(),
)) {
Ok(_) => {
print!("[+] successfully sent nat traversal request")
}
Err(_) => {
print!("[-] failed to send nat traversal request")
}
}
}
if ui.button("Infos").clicked() {
// action 3
ui.close();
}
// ... autres boutons
});
}
}
});
@@ -238,6 +464,21 @@ impl eframe::App for P2PClientApp {
// ui.label(format!("Status: {}", self.status_message));
});
if let Some(msg) = &self.error_message {
let msg = msg.clone();
egui::Window::new("Error")
.collapsible(false)
.resizable(false)
.anchor(egui::Align2::CENTER_CENTER, [0.0, 0.0])
.show(ctx, |ui| {
ui.label(&msg);
if ui.button("OK").clicked() {
self.clear_error();
}
});
ctx.request_repaint();
}
ctx.request_repaint_after(std::time::Duration::from_millis(10));
}
}
@@ -305,7 +546,13 @@ impl P2PClientApp {
entry.content_hash,
tree,
depth + 1,
Some(entry.filename),
Some(
entry
.filename
.as_slice()
.try_into()
.expect("incorrect size"),
),
);
}
});
@@ -326,7 +573,7 @@ impl P2PClientApp {
.enabled(true)
.show(ui, |ui| {
for child in &node.children_hashes {
self.draw_file_node(ui, child.clone(), tree, depth + 1, None);
self.draw_file_node(ui, child.content_hash, tree, depth + 1, None);
}
});
}

View File

@@ -1,5 +1,5 @@
use crate::gui_app::P2PClientApp;
use client_network::{NetworkCommand, NetworkEvent, start_p2p_executor};
use client_network::{NetworkCommand, NetworkEvent, P2PSharedData, start_p2p_executor};
mod gui_app;
@@ -11,7 +11,10 @@ async fn main() -> eframe::Result<()> {
// 2. Start the P2P Network Executor in a separate Tokio task
// The executor runs in the background of our main async runtime.
let _network_handle = start_p2p_executor(network_cmd_rx, network_event_tx);
let shared_data: Option<P2PSharedData> = None;
let _network_handle = start_p2p_executor(network_cmd_rx, network_event_tx, shared_data);
// 3. Configure and Run the Eframe/Egui GUI
let options = eframe::NativeOptions {
@@ -34,4 +37,6 @@ async fn main() -> eframe::Result<()> {
Ok(Box::new(app))
}),
)
// Starts the protocol
}

View File

@@ -1,12 +1,19 @@
use std::io::Read;
use bytes::Bytes;
use p256::EncodedPoint;
use p256::ecdsa::{
Signature, SigningKey, VerifyingKey,
signature::{Signer, Verifier},
};
use rand_core::OsRng;
use reqwest::Error;
use sha2::{Digest, Sha256};
///
/// contains the ecdsa private key, the ecdsa public key and the username
///
///
pub struct CryptographicSignature {
priv_key: SigningKey,
pub pub_key: VerifyingKey,
@@ -34,22 +41,125 @@ impl CryptographicSignature {
///
/// returns a string representing the pub_key as a String
///
pub fn formatPubKey(crypto_pair: CryptographicSignature) -> String {
pub fn formatPubKey(crypto_pair: CryptographicSignature) -> String {
let encoded_point = crypto_pair.pub_key.to_encoded_point(false);
let pubkey_bytes = encoded_point.as_bytes();
hex::encode(pubkey_bytes)
}
#[cfg(test)]
mod tests {
// Note this useful idiom: importing names from outer (for mod tests) scope.
use super::*;
pub async fn get_peer_key(username: &String) -> Result<VerifyingKey, reqwest::Error> {
let client = reqwest::Client::new();
let uri = format!("https://jch.irif.fr:8443/peers/{}/key", username);
let res = client.get(uri).send().await?;
#[test]
fn creating_cryptographic_signature() {
let username = String::from("quoicoubeh");
let crypto_pair = CryptographicSignature::new(username);
let formatted_pubkey =formatPubKey(crypto_pair);
println!("pubkey : {}",formatted_pubkey);
match res.error_for_status_ref() {
Ok(_) => {
println!("Successfully retreived the peers key.");
let body: Bytes = res.bytes().await?;
let slice: &[u8] = body.as_ref();
let body_bytes: &[u8; 64] = slice.try_into().expect("size error");
let received_key = convert_verifyingkey(body_bytes);
Ok(received_key)
}
Err(e) => {
eprintln!(
"Failed to get the peers key from the server. Status: {}",
res.status()
);
Err(e)
}
}
}
fn convert_verifyingkey(raw_xy: &[u8; 64]) -> VerifyingKey {
let mut sec1 = [0u8; 65];
sec1[0] = 0x04;
sec1[1..].copy_from_slice(raw_xy);
let ep = EncodedPoint::from_bytes(&sec1).expect("invalid point bytes");
let pk = VerifyingKey::from_encoded_point(&ep).expect("invalid encoded point");
VerifyingKey::from(pk)
}
pub fn verify_signature(pubkey: VerifyingKey, message: &Vec<u8>) -> bool {
let length_bytes: [u8; 2] = message[5..7].try_into().expect("Taille incorrecte");
let length = u16::from_be_bytes(length_bytes);
println!("message length: {}", length);
let msg_to_hash = &message[..length as usize + 7];
let signature_bytes = &message[length as usize + 7..length as usize + 7 + 64];
println!("conversion start");
let sig = match Signature::from_bytes(signature_bytes.try_into().expect("conversion error")) {
Ok(s) => s,
Err(_) => return false,
};
println!("conversion done");
match pubkey.verify(&msg_to_hash, &sig) {
Ok(()) => true,
Err(_) => false,
}
}
///
/// takes a serialized message and adds the signature using the private key
///
pub fn sign_message(crypto_pair: &CryptographicSignature, message: &Vec<u8>) -> Vec<u8> {
let length_bytes: [u8; 2] = message[5..7]
.try_into()
.expect("slice with incorrect length");
let msg_length = u16::from_be_bytes(length_bytes);
println!(
"message to serialize: {:?}",
&message[..7 + msg_length as usize]
);
let digest = Sha256::digest(&message[..7 + msg_length as usize]);
let signature = crypto_pair.priv_key.sign_prehash_recoverable(&digest);
let message_length = 7 + msg_length as usize + 64;
let mut signed_message = Vec::with_capacity(message_length);
println!("{}", message_length);
signed_message.extend_from_slice(&message[..7 + msg_length as usize]);
println!("signed_tmp:{:?}", signed_message);
match signature {
Ok(signature) => {
let r = signature.0.r();
let s = signature.0.s();
let r_bytes = r.to_bytes(); // Returns a GenericArray/bytes object
let s_bytes = s.to_bytes();
signed_message.extend_from_slice(&r_bytes[..32]);
signed_message.extend_from_slice(&s_bytes[..32]);
println!("signed:{:?}, len: {}", signed_message, signed_message.len());
signed_message
}
Err(e) => {
panic!("error");
}
}
}
#[cfg(test)]
mod tests {
use super::*;
///
/// creates a cryptographic signature
///
#[test]
fn creating_cryptographic_signature() {
let username = String::from("gamixtreize");
let crypto_pair = CryptographicSignature::new(username);
let formatted_pubkey = formatPubKey(crypto_pair);
println!("pubkey : {}", formatted_pubkey);
}
/*#[test]
fn signing_message() {
let username = String::from("gamixtreize");
let crypto_pair = CryptographicSignature::new(username.clone());
let handshake = HandshakeMessage::hello(0, 12, username);
let ser = handshake.serialize();
let signed_message = sign_message(&crypto_pair, &ser);
println!("unsigned_message: {:?}", ser);
println!("signed_message: {:?}", signed_message);
}*/
}

View File

@@ -80,7 +80,7 @@ impl MerkleTree {
}
}
fn generate_random_file_node(
/*fn generate_random_file_node(
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
@@ -110,9 +110,9 @@ fn generate_random_file_node(
storage.insert(hash, node);
Ok(hash)
}
}
}*/
fn generate_random_directory_node(
/*fn generate_random_directory_node(
depth: u32,
max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>,
@@ -172,7 +172,7 @@ fn generate_random_directory_node(
storage.insert(hash, node);
Ok(hash)
}
}
}*/
#[derive(Debug, Clone)]
pub struct ChunkNode {
@@ -208,7 +208,7 @@ impl ChunkNode {
// Helper struct
#[derive(Debug, Clone)]
pub struct DirectoryEntry {
pub filename: [u8; FILENAME_HASH_SIZE],
pub filename: Vec<u8>,
pub content_hash: NodeHash,
}
@@ -240,7 +240,7 @@ pub struct BigNode {
}
impl BigNode {
pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
/*pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!(
@@ -249,16 +249,17 @@ impl BigNode {
));
}
Ok(BigNode { children_hashes })
}
}*/
}
#[derive(Debug, Clone)]
pub struct BigDirectoryNode {
pub children_hashes: Vec<NodeHash>,
//pub children_hashes: Vec<NodeHash>,
pub children_hashes: Vec<DirectoryEntry>,
}
impl BigDirectoryNode {
pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
/*pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!(
@@ -267,6 +268,14 @@ impl BigDirectoryNode {
));
}
Ok(BigDirectoryNode { children_hashes })
}*/
pub fn new(entries: Vec<DirectoryEntry>) -> Result<Self, String> {
if entries.len() > MAX_DIRECTORY_ENTRIES {
return Err(format!("Directory exceeds {} bytes", entries.len()));
}
Ok(BigDirectoryNode {
children_hashes: entries,
})
}
}
@@ -301,14 +310,14 @@ impl MerkleNode {
}
MerkleNode::BigDirectory(node) => {
for hash in &node.children_hashes {
bytes.extend_from_slice(hash);
bytes.extend_from_slice(&hash.content_hash);
}
}
}
bytes
}
pub fn generate_random_tree(
/*pub fn generate_random_tree(
max_depth: u32,
) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new();
@@ -317,9 +326,9 @@ impl MerkleNode {
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage))
}
}*/
pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
/*pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
let mut res = HashMap::new();
let node1 = MerkleNode::Chunk(ChunkNode::new_random());
@@ -369,5 +378,5 @@ impl MerkleNode {
res.insert(root_hash, root);
(root_hash, res)
}
}*/
}

View File

@@ -0,0 +1,96 @@
use crate::{BigDirectoryNode, DirectoryEntry, DirectoryNode, MerkleNode, MerkleTree, NodeHash};
use sha2::{Digest, Sha256};
const CHUNK: u8 = 0;
const DIRECTORY: u8 = 1;
const BIG: u8 = 2;
const BIGDIRECTORY: u8 = 3;
fn parse_received_datum(recevied_datum: Vec<u8>, datum_length: usize, mut tree: MerkleTree) {
if datum_length > recevied_datum.len() {
return;
}
if datum_length < 32 + 64 {
return;
}
let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error");
let sigstart = datum_length - 64;
let value = &recevied_datum[32..sigstart];
let value_slice = value.to_vec();
let signature: [u8; 32] = recevied_datum[sigstart..datum_length]
.try_into()
.expect("Taille incorrecte");
let datum_type = value_slice[0];
match datum_type {
CHUNK => {
tree.data.insert(
hash_name,
MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
);
}
DIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.to_vec(),
content_hash: hash,
});
}
let current = DirectoryNode::new(dir_entries);
match current {
Ok(current_node) => {
tree.data
.insert(hash_name, MerkleNode::Directory(current_node));
}
Err(e) => {
println!("{}", e);
}
}
}
BIG => {
let chlidren: Vec<NodeHash> = Vec::new();
tree.data.insert(
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: chlidren,
}),
);
}
BIGDIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.to_vec(),
content_hash: hash,
});
}
let current = BigDirectoryNode::new(dir_entries);
match current {
Ok(current_node) => {
tree.data
.insert(hash_name, MerkleNode::BigDirectory(current_node));
}
Err(e) => {
println!("{}", e);
}
}
}
_ => {}
}
}

View File

@@ -1,35 +1,154 @@
mod data;
mod protocol;
mod cryptographic_signature;
mod registration;
mod data;
mod datum_parsing;
mod message_handling;
mod messages_channels;
mod messages_structure;
mod peers_refresh;
mod registration;
mod server_communication;
use crate::{
cryptographic_signature::CryptographicSignature,
message_handling::EventType,
messages_channels::{MultipleSenders, start_receving_thread},
messages_structure::{
NATTRAVERSALREQUEST, NATTRAVERSALREQUEST2, ROOTREQUEST, construct_message,
},
peers_refresh::HandshakeHistory,
registration::{parse_addresses, perform_handshake, register_with_the_server},
server_communication::{generate_id, get_peer_list},
};
use std::{
io::Error,
net::{IpAddr, Ipv4Addr, UdpSocket},
};
use std::{
net::SocketAddr,
sync::{Arc, Mutex},
};
pub struct P2PSharedData {
shared_socket: Arc<UdpSocket>,
shared_cryptopair: Arc<CryptographicSignature>,
shared_messageslist: Arc<Mutex<HashMap<i32, EventType>>>,
shared_senders: Arc<MultipleSenders>,
server_name: Arc<Mutex<String>>,
handshake_peers: Arc<HandshakeHistory>,
}
use bytes::Bytes;
use p256::pkcs8::der::pem::Base64Encoder;
impl P2PSharedData {
pub fn new(
username: String,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
) -> Result<P2PSharedData, Error> {
let messages_list = HashMap::<i32, EventType>::new();
let username = String::from(username);
let crypto_pair = CryptographicSignature::new(username);
let socket = UdpSocket::bind("0.0.0.0:0")?;
let shared_socket = Arc::new(socket);
let shared_cryptopair = Arc::new(crypto_pair);
let shared_messageslist = Arc::new(Mutex::new(messages_list));
let senders = MultipleSenders::new(1, &shared_socket, cmd_tx);
let shared_senders = Arc::new(senders);
let server_name = Arc::new(Mutex::new("".to_string()));
let handhsake_peers = Arc::new(HandshakeHistory::new());
Ok(P2PSharedData {
shared_socket: shared_socket,
shared_cryptopair: shared_cryptopair,
shared_messageslist: shared_messageslist,
shared_senders: shared_senders,
server_name: server_name,
handshake_peers: handhsake_peers,
})
}
pub fn socket(&self) -> Arc<UdpSocket> {
self.shared_socket.clone()
}
pub fn cryptopair(&self) -> Arc<CryptographicSignature> {
self.shared_cryptopair.clone()
}
pub fn messages_list(&self) -> Arc<Mutex<HashMap<i32, EventType>>> {
self.shared_messageslist.clone()
}
pub fn servername(&self) -> String {
let guard = self.server_name.lock().unwrap();
guard.to_string()
}
pub fn set_servername(&self, new: String) {
let mut guard = self.server_name.lock().unwrap();
*guard = new
}
pub fn senders(&self) -> Arc<MultipleSenders> {
self.shared_senders.clone()
}
pub fn socket_ref(&self) -> &UdpSocket {
&*self.shared_socket
}
pub fn cryptopair_ref(&self) -> &CryptographicSignature {
&*self.shared_cryptopair
}
pub fn handshake_ref(&self) -> &HandshakeHistory {
&*self.handshake_peers
}
pub fn messages_list_ref(&self) -> &Mutex<HashMap<i32, EventType>> {
&*self.shared_messageslist
}
pub fn senders_ref(&self) -> &MultipleSenders {
&*self.shared_senders
}
pub fn add_message(&self, id: i32, evt: EventType) {
let mut map = self.shared_messageslist.lock().unwrap();
map.insert(id, evt);
}
}
/// Messages sent to the Network thread by the GUI.
pub enum NetworkCommand {
ConnectToServer(String), // ServerIP
FetchPeerList(String), // ServerIP
ConnectToServerPut(String, String), // ServerIP
ServerHandshake(String, String), // ServerName
FetchPeerList(String), // ServerIP
RegisterAsPeer(String),
Ping(),
ConnectPeer(String), // IP:PORT
RequestFileTree(String), // peer_id
Ping(String),
NatTraversal(String, String),
ConnectPeer((String, bool)), // IP:PORT
RequestFileTree(String), // peer_id
RequestDirectoryContent(String, String),
RequestChunk(String, String),
Disconnect(),
ResetServerPeer(),
Discover(String, String, String),
GetChildren(String, String),
// ...
}
/// Messages sent to the GUI by the Network thread.
pub enum NetworkEvent {
Connected(),
Connected(String),
ConnectedHandshake(),
Disconnected(),
Error(),
Error(String),
PeerConnected(String),
PeerListUpdated(Vec<String>),
PeerListUpdated(Vec<(String, bool)>),
FileTreeReceived(String, Vec<MerkleNode>), // peer_id, content
DataReceived(String, MerkleNode),
FileTreeRootReceived(String, String),
FileTreeRootReceived(String, NodeHash),
HandshakeFailed(),
ServerHandshakeFailed(String),
// ...
}
use std::collections::HashMap;
pub use crate::data::*;
use crossbeam_channel::{Receiver, Sender};
use sha2::{Digest, Sha256};
@@ -52,10 +171,13 @@ pub fn calculate_chunk_id(data: &[u8]) -> String {
pub fn start_p2p_executor(
cmd_rx: Receiver<NetworkCommand>,
event_tx: Sender<NetworkEvent>,
mut shared_data: Option<P2PSharedData>,
) -> tokio::task::JoinHandle<()> {
// Use tokio to spawn the asynchronous networking logic
tokio::task::spawn(async move {
// P2P/Networking Setup goes here
let handshake_history = Arc::new(Mutex::new(HandshakeHistory::new()));
let handshake_clone = handshake_history.clone();
println!("Network executor started.");
@@ -64,9 +186,19 @@ pub fn start_p2p_executor(
// Check for commands from the GUI
if let Ok(cmd) = cmd_rx.try_recv() {
match cmd {
NetworkCommand::ConnectPeer(addr) => {
NetworkCommand::ServerHandshake(username, ip) => {
println!("server handshake called");
if let Some(sd) = shared_data.as_ref() {
start_receving_thread(sd, event_tx.clone(), &handshake_clone);
let res =
perform_handshake(&sd, username, ip, event_tx.clone(), true).await;
} else {
println!("no shared data");
}
}
NetworkCommand::ConnectPeer((username, connected)) => {
println!("[Network] ConnectPeer() called");
println!("[Network] Attempting to connect to: {}", addr);
println!("[Network] Attempting to connect to: {}", username);
// Network logic to connect...
// If successful, send an event back:
// event_tx.send(NetworkEvent::PeerConnected(addr)).unwrap();
@@ -74,36 +206,201 @@ pub fn start_p2p_executor(
NetworkCommand::RequestFileTree(_) => {
println!("[Network] RequestFileTree() called");
}
NetworkCommand::Discover(username, hash, ip) => {
// envoie un handshake au peer, puis un root request
if let Some(sd) = shared_data.as_ref() {
let res = {
let m = handshake_clone.lock().unwrap();
m.get_peer_info_username(username.clone()).cloned()
};
match res {
Some(peerinfo) => {
// envoyer un root request
let rootrequest = construct_message(
ROOTREQUEST,
Vec::new(),
generate_id(),
sd.cryptopair_ref(),
);
match rootrequest {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref().send_via(
0,
resp_msg,
peerinfo.ip.to_string(),
false,
sd.messages_list_ref(),
);
}
}
}
None => {
// envoyer un handshake
let res = perform_handshake(
&sd,
username,
ip,
event_tx.clone(),
false,
)
.await;
}
}
} else {
println!("no shared data");
}
}
NetworkCommand::GetChildren(username, hash) => {
// envoie un datum request au peer
}
NetworkCommand::RequestDirectoryContent(_, _) => {
println!("[Network] RequestDirectoryContent() called");
}
NetworkCommand::RequestChunk(_, _) => {
println!("[Network] RequestChunk() called");
}
NetworkCommand::ConnectToServer(ip) => {
NetworkCommand::ConnectToServerPut(ip, name) => {
println!("[Network] ConnectToServer() called");
// Actual server connection
tokio::time::sleep(std::time::Duration::from_millis(5000)).await;
shared_data = match P2PSharedData::new(name.clone(), event_tx.clone()) {
Ok(sd) => Some(sd),
Err(e) => {
let mut err_msg = String::from("failed to initialize socket: ");
err_msg += &e.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
let res = event_tx.send(NetworkEvent::Disconnected());
None
}
};
let res = event_tx.send(NetworkEvent::Connected());
if let Some(sd) = shared_data.as_ref() {
if let Err(e) = register_with_the_server(&sd.cryptopair(), &ip).await {
let mut err_msg = String::from("request failed: ");
err_msg += &e.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
let res = event_tx.send(NetworkEvent::Disconnected());
} else {
let res = event_tx.send(NetworkEvent::Connected(ip));
println!("username created: {}", sd.cryptopair().username);
}
//println!("ip: {}", ip);
}
//tokio::time::sleep(std::time::Duration::from_millis(5000)).await;
/*let res = event_tx.send(NetworkEvent::Connected());
if let Some(error) = res.err() {
println!(
"[Network] Couldn't send crossbeam message to GUI: {}",
error.to_string()
);
}
}*/
}
NetworkCommand::FetchPeerList(ip) => {
if ip == "" {
let res = event_tx.send(NetworkEvent::Error(
"Not registered to any server".to_string(),
));
} else {
println!("cc");
match get_peer_list(ip).await {
Ok(body) => match String::from_utf8(body.to_vec()) {
Ok(peers_list) => {
let mut peers: Vec<(String, bool)> = Vec::new();
let mut current = String::new();
for i in peers_list.chars() {
if i == '\n' {
peers.push((current.clone(), false));
current.clear();
} else {
current.push(i);
}
}
let res =
event_tx.send(NetworkEvent::PeerListUpdated(peers));
}
Err(e) => {
eprintln!("invalid UTF-8 in socket address bytes: {}", e);
}
},
Err(e) => println!("error"),
}
}
println!("[Network] FetchPeerList() called");
}
NetworkCommand::RegisterAsPeer(_) => {
println!("[Network] RegisterAsPeer() called");
}
NetworkCommand::Ping() => {
NetworkCommand::Ping(String) => {
println!("[Network] Ping() called");
}
NetworkCommand::Disconnect() => {
if let Some(sd) = shared_data.as_ref() {
println!("Disconnecting: {}", &sd.cryptopair().username);
shared_data = None;
let res = event_tx.send(NetworkEvent::Disconnected());
} else {
println!("no p2p data");
}
}
NetworkCommand::ResetServerPeer() => {
if let Some(sd) = shared_data.as_ref() {
sd.set_servername("".to_string());
} else {
println!("no p2p data");
}
}
NetworkCommand::NatTraversal(username, ip) => {
if let Some(sd) = shared_data.as_ref() {
println!("username:{}, ip:{}", username, ip);
// user server to send nattraversal request
let server_addr_query =
get_socket_address(sd.servername().clone(), ip.clone());
let peer_addr_query = get_socket_address(username.clone(), ip.clone());
match server_addr_query.await {
Some(server_addr) => match peer_addr_query.await {
Some(peer_addr) => {
let payload = socket_addr_to_vec(server_addr);
print!("{:?}", payload.clone());
let natreq = construct_message(
NATTRAVERSALREQUEST,
server_addr.to_string().into_bytes(),
generate_id(),
&sd.cryptopair(),
);
sd.senders_ref().send_via(
0,
natreq.expect(
"couldnt construct message nattraversalrequest2",
),
server_addr.to_string(),
false,
sd.messages_list_ref(),
);
}
None => {
let err_msg = format!("failed to retreive socket address")
.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
},
None => {
let err_msg =
format!("failed to retreive socket address").to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
}
}
}
}
@@ -117,3 +414,78 @@ pub fn start_p2p_executor(
}
})
}
fn socket_addr_to_vec(addr: SocketAddr) -> Vec<u8> {
let mut v = match addr.ip() {
IpAddr::V4(v4) => v4.octets().to_vec(),
IpAddr::V6(v6) => v6.octets().to_vec(),
};
v.extend(&addr.port().to_be_bytes());
v
}
fn parse_pack(s: &str) -> Option<[u8; 6]> {
// split into "ip" and "port"
let mut parts = s.rsplitn(2, ':');
let port_str = parts.next()?;
let ip_str = parts.next()?; // if missing, invalid
let ip: Ipv4Addr = ip_str.parse().ok()?;
let port: u16 = port_str.parse().ok()?;
let octets = ip.octets();
let port_be = port.to_be_bytes();
Some([
octets[0], octets[1], octets[2], octets[3], port_be[0], port_be[1],
])
}
///
/// sends a get request to the server to get the socket address of the given peer
///
pub async fn get_socket_address(username: String, ip: String) -> Option<SocketAddr> {
let client = reqwest::Client::new();
let uri = format!("{}/peers/{}/addresses", ip, username);
let res = client.get(uri).send().await.expect("couldnt get response");
if res.status().is_success() {
println!("Successfully retreived the addresses.");
} else {
eprintln!(
"Failed to get the peers addresses from the server. Status: {}",
res.status()
);
}
let body: Bytes = res.bytes().await.expect("couldnt get bytes");
match String::from_utf8(body.to_vec()) {
Ok(s) => {
let addresses = parse_addresses(&s);
addresses.iter().copied().find(|a| a.is_ipv4())
}
Err(_) => None,
}
}
pub async fn get_possible_socket_address(username: String, ip: String) -> Vec<SocketAddr> {
let client = reqwest::Client::new();
let uri = format!("{}/peers/{}/addresses", ip, username);
let res = client.get(uri).send().await.expect("couldnt get response");
if res.status().is_success() {
println!("Successfully retreived the addresses.");
} else {
eprintln!(
"Failed to get the peers addresses from the server. Status: {}",
res.status()
);
}
let body: Bytes = res.bytes().await.expect("couldnt get bytes");
match String::from_utf8(body.to_vec()) {
Ok(s) => {
let addresses = parse_addresses(&s);
addresses.iter().copied().filter(|a| a.is_ipv4()).collect()
}
Err(_) => Vec::new(),
}
}

View File

@@ -0,0 +1,473 @@
use crate::{
NetworkEvent, NodeHash,
cryptographic_signature::{
CryptographicSignature, get_peer_key, sign_message, verify_signature,
},
messages_channels::MultipleSenders,
messages_structure::construct_message,
peers_refresh::HandshakeHistory,
registration,
server_communication::generate_id,
};
use std::{collections::HashMap, net::SocketAddr};
use std::{
net::IpAddr,
sync::{Arc, Mutex},
};
pub enum EventType {
SendRootRequest,
}
const ID: usize = 4;
const TYPE: usize = 5;
const LENGTH: usize = 7;
const EXTENSIONS: usize = 4;
const SIGNATURE: usize = 64;
const PING: u8 = 0;
const OK: u8 = 128;
const ERROR: u8 = 129;
const HELLO: u8 = 1;
const HELLOREPLY: u8 = 130;
const ROOTREQUEST: u8 = 2;
const ROOTREPLY: u8 = 131;
const DATUMREQUEST: u8 = 3;
const NODATUM: u8 = 133;
const DATUM: u8 = 132;
const NATTRAVERSALREQUEST: u8 = 4;
const NATTRAVERSALREQUEST2: u8 = 5;
pub fn handle_recevied_message(
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
recevied_message: &Vec<u8>,
crypto_pair: &CryptographicSignature,
//socket_addr: &SocketAddr,
senders: &MultipleSenders,
server_name: &String,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr,
handhsake_history: &Arc<Mutex<HandshakeHistory>>,
) {
if recevied_message.len() < 4 {
return;
} // Basic safety check
let message_id: [u8; 4] = recevied_message[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let mut is_resp_to_server_handshake = false;
if recevied_message[4] == HELLO {
let length_bytes: [u8; 2] = recevied_message[TYPE..LENGTH]
.try_into()
.expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes) as usize;
let ilength = u16::from_be_bytes(length_bytes);
let received_name = &recevied_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let name = String::from_utf8(received_name.to_vec()).expect("wrong name");
if name.clone() == server_name.clone() {
is_resp_to_server_handshake = true;
}
}
let resp = parse_message(
recevied_message.to_vec(),
id,
crypto_pair,
cmd_tx,
ip,
messages_list,
handhsake_history,
senders,
);
match resp {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
senders.send_via(
0,
resp_msg,
ip.to_string(),
is_resp_to_server_handshake,
messages_list,
);
}
}
// Lock the mutex to access the HashMap
/*let list = messages_list.lock().unwrap();
let eventtype = list.get(&id); // Clone the enum so we can release the lock if needed
match eventtype {
Some(EventType::ServerHelloReply) => {
/*registration::register_ip_addresses(
crypto_pair,
socket_addr.to_string(),
senders,
&messages_list, // Pass the mutable reference inside the lock
546,
);*/
}
Some(_) => print!("Not implemented"),
None => {
let message_type = recevied_message[4];
// Handle handshake
if message_type == 1 {
let mut resp_to_serv = false;
println!("verify the signature");
let parsed_received_message = HandshakeMessage::parse(recevied_message.to_vec());
let received_name = String::from_utf8(parsed_received_message.name).expect("error");
let peer_pubkey = tokio::runtime::Runtime::new()
.unwrap()
.block_on(get_peer_key(&received_name))
.expect("failed to retrieve public key");
if received_name == server_name.to_string() {
resp_to_serv = true;
}
if !verify_signature(peer_pubkey, recevied_message) {
println!(
"incorrect signature from given peer: {}, ignoring message {}",
&received_name, id
);
} else {
// verify if this is a server handshake request
let username_size = crypto_pair.username.len();
let hello_handshake = HandshakeMessage::helloReply(
id as u32,
username_size as u16 + 4,
crypto_pair.username.clone(),
);
//HandshakeMessage::display(&hello_handshake);
let hello_handshake_serialized = hello_handshake.serialize();
let message_signed = sign_message(crypto_pair, &hello_handshake_serialized);
senders.send_via(0, message_signed, socket_addr.to_string(), resp_to_serv);
let mut list = messages_list.lock().expect("Failed to lock messages_list");
match list.get(&id) {
Some(_) => {
list.remove(&id);
}
None => {
list.insert(id, EventType::ServerHelloReply);
}
}
}
}
print!("Message not found for ID: {}", id)
}
}*/
}
pub fn parse_message(
received_message: Vec<u8>,
id: i32,
crypto_pair: &CryptographicSignature,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr,
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
handhsake_history_mutex: &Arc<Mutex<HandshakeHistory>>,
senders: &MultipleSenders,
) -> Option<Vec<u8>> {
let mut handhsake_history = handhsake_history_mutex.lock().unwrap();
let cmd_tx_clone = cmd_tx.clone();
let id_bytes: [u8; 4] = received_message[0..ID]
.try_into()
.expect("Taille incorrecte");
let msgtype = received_message[ID];
let length_bytes: [u8; 2] = received_message[TYPE..LENGTH]
.try_into()
.expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes) as usize;
// verify signature
match msgtype {
HELLO | HELLOREPLY | NODATUM | NATTRAVERSALREQUEST | NATTRAVERSALREQUEST2 => {
let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength);
let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let received_username = String::from_utf8(received_name.to_vec());
match received_username {
Ok(username) => {
let peer_pubkey =
match handhsake_history.get_peer_info_username(username.clone()) {
Some(peerinfo) => peerinfo.pubkey,
_ => tokio::runtime::Runtime::new()
.unwrap()
.block_on(get_peer_key(&username))
.expect("failed to retrieve public key"),
};
match msgtype {
HELLOREPLY => {
handhsake_history.add_new_handshake(peer_pubkey, "".to_string(), ip);
}
_ => {}
}
let signature: [u8; SIGNATURE] = received_message
[LENGTH + msg_length..LENGTH + msg_length + SIGNATURE]
.try_into()
.expect("Taille incorrecte");
if !verify_signature(peer_pubkey, &received_message) {
println!(
"incorrect signature from given peer: {}, ignoring message of type {} with id {}",
&username, received_message[ID], id
);
return None;
}
}
Err(e) => {
println!("incorrect name: {}", e);
return None;
}
}
}
ROOTREPLY => {
let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength);
if let Some(peerinfo) = handhsake_history.get_peer_info_ip(ip.to_string()) {
if !verify_signature(peerinfo.pubkey, &received_message) {
println!(
"incorrect signature from given peer: {}, ignoring message of type {} with id {}",
&peerinfo.username, received_message[ID], id
);
return None;
} else {
println!("signature verified");
}
}
}
_ => {}
}
// Message handling
let mut constructed_message: Option<Vec<u8>> = None;
match msgtype {
// PING
//
// envoie un OK
PING => {
constructed_message = construct_message(OK, Vec::new(), id, crypto_pair);
}
//
// OK
//
// rien ?
// si NATTRAVERSALREQUEST alors
NATTRAVERSALREQUEST => {
// send ok & send nattraversalrequest2 to peer
constructed_message = construct_message(OK, Vec::new(), id, crypto_pair);
let ilength = u16::from_be_bytes(length_bytes);
let received_address =
&received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let address = String::from_utf8(received_address.to_vec()).expect("wrong name");
let natreq2 = construct_message(
NATTRAVERSALREQUEST2,
ip.to_string().into_bytes(),
id,
crypto_pair,
);
senders.send_via(
0,
natreq2.expect("couldnt construct message nattraversalrequest2"),
address,
false,
&messages_list,
);
}
NATTRAVERSALREQUEST2 => {
// send ok & send ping to peer
constructed_message = construct_message(OK, Vec::new(), id, crypto_pair);
let ilength = u16::from_be_bytes(length_bytes);
let received_address = &received_message[LENGTH..LENGTH + ilength as usize];
let address = String::from_utf8(received_address.to_vec()).expect("wrong name");
let pingreq = construct_message(PING, Vec::new(), id, crypto_pair);
senders.send_via(
0,
pingreq.expect("couldnt construct message ping request"),
address,
false,
&messages_list,
);
}
//
// ERROR
//
// affiche un msg d'erreur
ERROR => {
if let Ok(err_received) =
String::from_utf8(received_message[LENGTH..(msg_length + LENGTH)].to_vec())
{
let err_msg = format!("Error received from peer {} : {}", ip, err_received);
let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg));
} else {
let err_msg = format!("Error received from peer {} : N/A", ip,);
let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg));
}
}
// HELLO
//
// envoie une hello reply
//
HELLO => {
let mut payload = Vec::new();
payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let helloreply = construct_message(HELLOREPLY, payload, id, crypto_pair);
return helloreply;
}
// HELLOREPLY
//
//
// ajoute a la liste des peers handshake
HELLOREPLY => {
// ajoute l'username a la liste des peers handshake
let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH]
.try_into()
.expect("incorrect size"),
);
let received_username =
&received_message[LENGTH + EXTENSIONS..LENGTH + received_length as usize];
handhsake_history.update_peer_info(
ip.to_string(),
String::from_utf8(received_username.to_vec()).expect("invalid conversion"),
);
// verifie s'il faut renvoyer un root request
let guard = messages_list.lock().expect("Échec du verrouillage");
let res = guard.get(&id);
match res {
Some(ev) => {
match ev {
EventType::SendRootRequest => {
// envoyer la root request
let rootrequest = construct_message(
ROOTREQUEST,
Vec::new(),
generate_id(),
crypto_pair,
);
return rootrequest;
}
}
}
None => {}
}
}
//
// ROOTREQUEST
//
// envoie un root reply
//
// ROOTREPLY
//
ROOTREPLY => {
// recuperer le pseudo du peers ayant repondu
let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string());
match peers_exist {
Some(peerinfo) => {
// envoyer le hash a la gui
let received_hash: NodeHash = received_message[LENGTH..(32 + LENGTH)]
.try_into()
.expect("incorrect size");
let res = cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived(
peerinfo.username.clone(),
received_hash,
));
println!("file tree sent")
}
None => {
eprintln!("no peers found");
}
}
}
//
// DATUMREQUEST
//
// envoie le datum
//
// NODATUM
//
// affiche un msg d'erreur
//
// DATUM
//
// parcourt le directory recu ou le big directory et renvoie une DATUMREQUEST pour chaque
// directory ou big directory lu
//
// NATTRAVERSALREQUEST
//
// repond OK et envoie un NATTRAVERSALREQUEST2 au pair B
//
// NATTRAVERSALREQUEST2
//
// envoie OK à S puis envoie un ping à S
// PING
//
// envoie un OK
//
// OK
//
// si NATTRAVERSALREQUEST alors
//
// ERROR
//
// affiche un msg d'erreur
//
// HELLO
//
// envoie une hello reply
//
// HELLOREPLY
//
// envoie un root request
//
// ROOTREQUEST
//
// envoie un root reply
//
// ROOTREPLY
//
// envoie un datum request
//
// DATUMREQUEST
//
// envoie le datum
//
// NODATUM
//
// affiche un msg d'erreur
//
// DATUM
//
// parcourt le directory recu ou le big directory et renvoie une DATUMREQUEST pour chaque
// directory ou big directory lu
//
// NATTRAVERSALREQUEST
//
// repond OK et envoie un NATTRAVERSALREQUEST2 au pair B
//
// NATTRAVERSALREQUEST2
//
// envoie OK à S puis envoie un ping à S
_ => return None,
};
constructed_message
}

View File

@@ -0,0 +1,300 @@
use crate::P2PSharedData;
use crate::cryptographic_signature::CryptographicSignature;
use crate::message_handling::EventType;
use crate::message_handling::handle_recevied_message;
use crate::peers_refresh::HandshakeHistory;
use std::collections::HashMap;
use std::net::SocketAddr;
use std::net::UdpSocket;
use std::sync::{Arc, Mutex};
use std::sync::mpsc::{self, Sender};
use std::thread;
use std::collections::VecDeque;
use std::time::{Duration, Instant};
use crate::NetworkEvent;
pub struct MultipleSenders {
senders: Vec<Sender<Message>>,
response_channel: crossbeam_channel::Sender<NetworkEvent>,
}
pub struct Message {
pub payload: Vec<u8>,
pub address: String,
pub is_resp_to_server_handshake: bool,
}
struct RetryMessage {
msg: Message,
attempts: u8,
next_try: Instant,
}
impl MultipleSenders {
/*pub fn new(num_channels: usize, socket: &Arc<UdpSocket>) -> Self {
let mut senders = Vec::new();
// Wrap the socket in an Arc so it can be shared across threads
for i in 0..num_channels {
let (tx, rx) = mpsc::channel::<Message>();
// Clone the Arc (this just bumps the reference count, it doesn't copy the socket)
let sock_clone = Arc::clone(&socket);
senders.push(tx);
thread::spawn(move || {
println!("Canal d'envoi {} prêt", i);
for msg in rx {
// Use the cloned Arc inside the thread
if let Err(e) = sock_clone.send_to(&msg.payload, &msg.address) {
eprintln!(
"Erreur d'envoi sur canal {}: {}, address: {}",
i, e, &msg.address
);
} else {
let message_id: [u8; 4] = msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let message_type = msg.payload[4];
println!(
"Message {0} de type {1} envoyé à {2} par le canal {3}",
id, message_type, msg.address, i
);
}
}
});
}
MultipleSenders { senders }
}*/
pub fn new(
num_channels: usize,
socket: &Arc<UdpSocket>,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
) -> Self {
let mut senders = Vec::new();
for i in 0..num_channels {
let (tx, rx) = mpsc::channel::<Message>();
let sock_clone = Arc::clone(&socket);
let cmd_tx_clone = cmd_tx.clone();
senders.push(tx);
thread::spawn(move || {
println!("Canal d'envoi {} prêt", i);
let mut queue: VecDeque<RetryMessage> = VecDeque::new();
let max_attempts = 5;
loop {
// Priorité aux messages en attente prêts à être réessayés
if let Some(front) = queue.front() {
if front.next_try <= Instant::now() {
// On prend le message de la queue
let mut item = queue.pop_front().unwrap();
match sock_clone.send_to(&item.msg.payload, &item.msg.address) {
Ok(_) => {
if (&item).msg.is_resp_to_server_handshake {
let res =
cmd_tx_clone.send(NetworkEvent::ConnectedHandshake());
}
let message_id: [u8; 4] =
item.msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let message_type = item.msg.payload[4];
println!(
"Message {0} de type {1} envoyé à {2} par le canal {3} (retry {4})",
id, message_type, item.msg.address, i, item.attempts
);
}
Err(e) => {
item.attempts += 1;
if item.attempts >= max_attempts {
let str = format!(
"Abandon du message après {} tentatives sur canal {}: {}, address: {}",
item.attempts, i, e, item.msg.address
);
if (&item).msg.is_resp_to_server_handshake {
let res = cmd_tx_clone
.send(NetworkEvent::ServerHandshakeFailed(str));
}
} else {
// Backoff exponentiel simple
let backoff = Duration::from_millis(
2000u64.saturating_pow(item.attempts as u32),
);
item.next_try = Instant::now() + backoff;
eprintln!(
"Erreur d'envoi sur canal {}: {}, reprogrammation dans {:?}, tentative {}",
i, e, backoff, item.attempts
);
queue.push_front(item); // remettre en tête pour réessayer plus tôt
}
}
}
continue;
}
}
// Si aucun retry prêt, on bloque sur rx avec timeout court, pour pouvoir traiter les timers
match rx.recv_timeout(Duration::from_millis(200)) {
Ok(msg) => {
// On tente d'envoyer immédiatement
match sock_clone.send_to(&msg.payload, &msg.address) {
Ok(_) => {
if msg.is_resp_to_server_handshake {
let res =
cmd_tx_clone.send(NetworkEvent::ConnectedHandshake());
}
let message_id: [u8; 4] =
msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let message_type = msg.payload[4];
println!(
"Message {0} de type {1} envoyé à {2} par le canal {3}",
id, message_type, msg.address, i
);
}
Err(e) => {
eprintln!(
"Erreur d'envoi initial sur canal {}: {}, address: {} -- mise en queue pour retry",
i, e, &msg.address
);
let retry = RetryMessage {
msg,
attempts: 1,
next_try: Instant::now() + Duration::from_millis(100),
};
queue.push_back(retry);
}
}
}
Err(mpsc::RecvTimeoutError::Timeout) => {
// Permet de vérifier la queue à nouveau
continue;
}
Err(mpsc::RecvTimeoutError::Disconnected) => {
// Le sender a été fermé ; vider la queue et sortir
eprintln!(
"Sender fermé pour le canal {}, fermeture du thread d'envoi",
i
);
break;
}
}
}
});
}
MultipleSenders {
senders,
response_channel: cmd_tx.clone(),
}
}
/// Envoie un message via un canal spécifique (round-robin ou index précis)
pub fn send_via(
&self,
channel_idx: usize,
data: Vec<u8>,
remote_addr: String,
is_resp_to_server_handshake: bool,
messages_list: &Mutex<HashMap<i32, EventType>>,
) {
println!(
"is_resp_to_server_handshake {}",
is_resp_to_server_handshake
);
let msg_to_send = Message {
payload: data.clone(),
address: remote_addr,
is_resp_to_server_handshake,
};
if let Some(sender) = self.senders.get(channel_idx) {
let _ = sender.send(msg_to_send);
}
if !is_resp_to_server_handshake {
let mut guard = messages_list.lock().unwrap();
let message_id: [u8; 4] = data[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
guard.insert(id, EventType::SendRootRequest);
}
}
/*pub fn start_receving_thread(
socket: &Arc<UdpSocket>,
messages_list: &Arc<HashMap<i32, EventType>>,
crypto_pair: &Arc<CryptographicSignature>,
socket_addr: SocketAddr,
senders: &Arc<MultipleSenders>,
) {
let sock_clone = Arc::clone(socket);
let cryptopair_clone = Arc::clone(crypto_pair);
let senders_clone = Arc::clone(senders);
let messages_clone = Arc::clone(messages_list);
thread::spawn(move || {
let mut buf = [0u8; 1024];
loop {
match sock_clone.recv_from(&mut buf) {
Ok((amt, src)) => {
handle_recevied_message(
&messages_clone,
&buf.to_vec(),
&cryptopair_clone,
&socket_addr,
&senders_clone,
);
println!("Reçu {} octets de {}: {:?}", amt, src, &buf[..amt]);
}
Err(e) => eprintln!("Erreur de réception: {}", e),
}
}
});
}*/
}
pub fn start_receving_thread(
shared_data: &P2PSharedData,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
handshake_history: &Arc<Mutex<HandshakeHistory>>,
) {
let sock_clone = shared_data.socket();
let cryptopair_clone = shared_data.cryptopair();
let senders_clone = shared_data.senders();
let messages_clone = shared_data.messages_list();
let servername_clone = shared_data.servername();
let handshake_clone = handshake_history.clone();
thread::spawn(move || {
let mut buf = [0u8; 1024];
loop {
match sock_clone.recv_from(&mut buf) {
Ok((amt, src)) => {
let received_data = buf[..amt].to_vec();
println!("Reçu {} octets de {}: {:?}", amt, src, received_data);
handle_recevied_message(
&messages_clone,
&received_data,
&cryptopair_clone,
&senders_clone,
&servername_clone,
cmd_tx.clone(),
src,
&handshake_clone,
);
}
Err(e) => eprintln!("Erreur de réception: {}", e),
}
}
});
}

View File

@@ -1,50 +1,241 @@
struct UDPMessage {
id: [u8; 4],
msg_type: u8,
length: [u8; 2],
body: [u8; 985],
signature: [u8; 32],
use crate::cryptographic_signature::{CryptographicSignature, sign_message};
const ID: usize = 4;
const TYPE: usize = 5;
const LENGTH: usize = 7;
const EXTENSIONS: usize = 4;
const SIGNATURE: usize = 64;
pub(crate) const PING: u8 = 0;
pub(crate) const OK: u8 = 128;
pub(crate) const ERROR: u8 = 129;
pub(crate) const HELLO: u8 = 1;
pub(crate) const HELLOREPLY: u8 = 130;
pub(crate) const ROOTREQUEST: u8 = 2;
pub(crate) const ROOTREPLY: u8 = 131;
pub(crate) const DATUMREQUEST: u8 = 3;
pub(crate) const NODATUM: u8 = 133;
pub(crate) const DATUM: u8 = 132;
pub(crate) const NATTRAVERSALREQUEST: u8 = 4;
pub(crate) const NATTRAVERSALREQUEST2: u8 = 5;
pub fn construct_message(
msgtype: u8,
payload: Vec<u8>,
id: i32,
crypto_pair: &CryptographicSignature,
) -> Option<Vec<u8>> {
let mut message = Vec::new();
// ID
// type
message.extend_from_slice(&id.to_be_bytes());
message.push(msgtype);
match msgtype {
HELLO | HELLOREPLY => {
// length
let a = payload.len() as u16;
println!("payload size:{}", a);
message.extend_from_slice(&a.to_be_bytes());
message.extend_from_slice(&payload);
let signature = sign_message(crypto_pair, &message);
return Some(signature);
}
PING | OK | ROOTREQUEST => {
message.extend_from_slice(&0u16.to_be_bytes());
return Some(message);
}
ERROR | DATUMREQUEST => {
message.extend_from_slice(&payload.len().to_be_bytes());
message.extend_from_slice(&payload);
return Some(message);
}
ROOTREPLY | NODATUM | DATUM | NATTRAVERSALREQUEST => {
println!("payload:{:?}", &payload);
message.extend_from_slice(&(payload.len() as u16).to_be_bytes());
message.extend_from_slice(&payload);
println!("payload:{:?}", &message);
let signature = sign_message(crypto_pair, &message);
message.extend_from_slice(&signature);
return Some(message);
}
_ => {}
}
None
}
struct HandshakeMessage {
id: [u8; 4],
pub struct UDPMessage {
id: u32,
msg_type: u8,
length: [u8; 2],
extensions: [u8; 4],
name: [u8; 981],
signature: [u8; 32],
length: u16,
body: Vec<u8>,
signature: Vec<u8>,
}
pub struct HandshakeMessage {
pub id: u32,
msg_type: u8,
length: u16,
extensions: u32,
pub name: Vec<u8>,
pub signature: Vec<u8>,
}
pub struct NatTraversal {}
impl UDPMessage {
pub fn ping(id: i32) -> UDPMessage {
UDPMessage { id: id.to_ne_bytes(), msg_type: 0, length: [0; 2], body: [0; 985], signature: [0; 32]}
pub fn ping(id: u32) -> UDPMessage {
UDPMessage {
id: id,
msg_type: 0,
length: 0,
body: vec![0; 985],
signature: vec![0; 32],
}
}
pub fn error(id: i32) -> UDPMessage {
UDPMessage { id: id.to_ne_bytes(), msg_type: 129, length: [0; 2], body: [0; 985], signature: [0; 32]}
}
pub fn hello(id: i32, length: i16, username: String) -> HandshakeMessage {
let username_bytes = username.as_bytes();
let mut body: [u8; 981] = [0; 981];
let length_to_copy = username_bytes.len().min(981);
body[..length_to_copy].copy_from_slice(&username_bytes[..length_to_copy]);
HandshakeMessage {id: id.to_ne_bytes(), msg_type: 1, length: length.to_ne_bytes(), extensions: [0;4], name: body, signature: [0;32]}
pub fn error(id: u32) -> UDPMessage {
UDPMessage {
id: id,
msg_type: 129,
length: 0,
body: vec![0; 985],
signature: vec![0; 32],
}
}
pub fn helloReply(id: i32, length: i16, username: String) -> HandshakeMessage {
let username_bytes = username.as_bytes();
let mut body: [u8; 981] = [0; 981];
let length_to_copy = username_bytes.len().min(981);
body[..length_to_copy].copy_from_slice(&username_bytes[..length_to_copy]);
HandshakeMessage {id: id.to_ne_bytes(), msg_type: 130, length: length.to_ne_bytes(), extensions: [0;4], name: body, signature: [0;32]}
pub fn parse(received_message: Vec<u8>) -> UDPMessage {
let id_bytes: [u8; 4] = received_message[0..4]
.try_into()
.expect("Taille incorrecte");
let length_bytes: [u8; 2] = received_message[5..7]
.try_into()
.expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes);
let name_bytes = &received_message[7..msg_length as usize + 8];
let signature_bytes =
&received_message[msg_length as usize + 8..msg_length as usize + 9 + 32];
UDPMessage {
id: u32::from_be_bytes(id_bytes),
msg_type: received_message[4],
length: u16::from_be_bytes(length_bytes),
body: name_bytes.to_vec(),
signature: signature_bytes.to_vec(),
}
}
pub fn display(&self) {
println!("ID: {:?}", self.id);
println!("Message Type: {}", self.msg_type);
println!("Length: {:?}", self.length);
let good_length = usize::min(self.length as usize, 985);
println!("name: {:?}", &self.body[..good_length]);
println!("Signature: {:?}", self.signature);
}
}
impl HandshakeMessage {
pub fn display(&self) {
println!("ID: {:?}", self.id);
println!("Message Type: {}", self.msg_type);
println!("Length: {:?}", self.length);
println!("extensions: {:?}", self.extensions);
println!("name: {:?}", &self.name[..(self.length - 4) as usize]);
println!("Signature: {:?}", self.signature);
}
pub fn hello(id: u32, length: u16, username: String) -> HandshakeMessage {
let name_vec = username.trim_end_matches(char::from(0)).as_bytes().to_vec();
HandshakeMessage {
id: id,
msg_type: 1,
length: length,
extensions: 0,
name: name_vec,
signature: vec![0; 64],
}
}
pub fn helloReply(id: u32, length: u16, username: String) -> HandshakeMessage {
let name_vec = username.trim_end_matches(char::from(0)).as_bytes().to_vec();
HandshakeMessage {
id: id,
msg_type: 130,
length: length,
extensions: 0,
name: name_vec,
signature: vec![0; 64],
}
}
pub fn serialize(&self) -> Vec<u8> {
let mut out = Vec::with_capacity(4 + 1 + 2 + 4 + self.name.len() + self.signature.len());
// id: u32 little-endian
out.extend_from_slice(&self.id.to_be_bytes());
// msg_type: u8
out.push(self.msg_type);
out.extend_from_slice(&self.length.to_be_bytes());
out.extend_from_slice(&self.extensions.to_be_bytes());
out.extend_from_slice(&self.name);
out.extend_from_slice(&self.signature);
out
}
pub fn parse(received_message: Vec<u8>) -> HandshakeMessage {
let id_bytes: [u8; 4] = received_message[0..4]
.try_into()
.expect("Taille incorrecte");
let length_bytes: [u8; 2] = received_message[5..7]
.try_into()
.expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes);
let extensions_bytes: [u8; 4] = received_message[7..11]
.try_into()
.expect("Taille incorrecte");
let name_bytes = &received_message[11..(11 + msg_length - 4) as usize];
let signature_bytes =
&received_message[(11 + msg_length - 4) as usize..(11 + msg_length - 4 + 64) as usize];
HandshakeMessage {
id: u32::from_be_bytes(id_bytes),
msg_type: received_message[4],
length: u16::from_be_bytes(length_bytes),
extensions: u32::from_be_bytes(extensions_bytes),
name: name_bytes.to_vec(),
signature: signature_bytes.to_vec(),
}
}
}
#[cfg(test)]
mod tests {
// Note this useful idiom: importing names from outer (for mod tests) scope.
use super::*;
/// creates an handshake message
#[tokio::test]
async fn creating_handshake_msg() {
let username = String::from("charlie_kirk");
let handshake = HandshakeMessage::hello(0, 12, username);
handshake.display();
}
/// parses an handshake message
#[tokio::test]
async fn parse_handshakemessage() {
let username = String::from("charlie_kirk");
let handshake = HandshakeMessage::hello(0, 12, username);
let ser = handshake.serialize();
let parsed = HandshakeMessage::parse(ser);
handshake.display();
parsed.display();
}
}

View File

@@ -0,0 +1,160 @@
// this class consists of a thread that will re send pings every time the first element
// of the stack is at the correct unix time
use std::{
collections::{HashMap, VecDeque},
net::{AddrParseError, Ipv4Addr, SocketAddr},
ops::Add,
process::Command,
sync::{Arc, Mutex},
thread,
time::{self, Duration, SystemTime},
};
use crate::NetworkEvent;
use crate::{
P2PSharedData, construct_message, generate_id, messages_structure,
registration::perform_handshake,
};
use crossbeam_channel::{Receiver, Sender};
use p256::ecdsa::VerifyingKey;
#[derive(Debug, Clone)]
pub struct PeerInfo {
pub username: String,
pub pubkey: VerifyingKey,
pub ip: SocketAddr,
}
pub struct HandshakeHistory {
//time_k_ip_v: HashMap<u64, u64>,
username_k_peerinfo_v: HashMap<String, PeerInfo>,
ip_k_peerinfo_v: HashMap<String, PeerInfo>,
}
impl HandshakeHistory {
pub fn new() -> HandshakeHistory {
HandshakeHistory {
//time_k_ip_v: HashMap::new(),
//ip_k_peerinfo_v: HashMap::new(),
username_k_peerinfo_v: HashMap::new(),
ip_k_peerinfo_v: HashMap::new(),
}
}
/*pub fn update_handshake(&self) {
let hashmap_shared = Arc::new(self.username_k_peerinfo_v);
thread::spawn(move || {
let selfhashmap = hashmap_shared.clone();
loop {
for peer in selfhashmap.keys() {
let peer_ip = selfhashmap.get(peer);
// send ping
}
let mut child = Command::new("sleep").arg("10").spawn().unwrap();
let _result = child.wait().unwrap();
}
});
}*/
pub fn get_peer_info_username(&self, username: String) -> Option<&PeerInfo> {
self.username_k_peerinfo_v.get(&username).clone()
}
pub fn get_peer_info_ip(&self, ip: String) -> Option<&PeerInfo> {
self.ip_k_peerinfo_v.get(&ip).clone()
}
pub fn update_handshake(&self) {
// clone the map so we own it (cheap if PeerInfo is Clone)
let map_clone: Arc<HashMap<String, PeerInfo>> =
Arc::new(self.username_k_peerinfo_v.clone());
//let map_ip_clone: Arc<HashMap<String, PeerInfo>> = Arc::new(self.ip_k_peerinfo_v.clone());
let map_for_thread = Arc::clone(&map_clone);
thread::spawn(move || {
loop {
// Arc<HashMap<..>> derefs to &HashMap so these reads work
for (peer, peerinfo) in map_for_thread.iter() {
// send ping to peerinfo
}
thread::sleep(Duration::from_secs(10));
}
});
}
pub fn update_peer_info(&mut self, ip: String, username: String) {
let peerinfo = self.get_peer_info_ip(ip.clone());
match peerinfo {
Some(peer_info) => match ip.parse::<SocketAddr>() {
Ok(addr) => {
let new_peer_info = PeerInfo {
username: username.clone(),
pubkey: peer_info.pubkey,
ip: addr,
};
self.ip_k_peerinfo_v.insert(ip, new_peer_info.clone());
self.username_k_peerinfo_v.insert(username, new_peer_info);
}
Err(e) => eprintln!("parse error: {}", e),
},
None => {
eprintln!("no peer info found in hashmap")
}
}
}
pub fn add_new_handshake(&mut self, hash: VerifyingKey, username: String, ip: SocketAddr) {
let peerinfo = PeerInfo {
username: username.clone(),
pubkey: hash,
ip,
};
self.username_k_peerinfo_v
.insert(username, peerinfo.clone());
self.ip_k_peerinfo_v
.insert(ip.to_string(), peerinfo.clone());
}
}
pub fn perform_discover(
username: String,
hash: String,
sd: &P2PSharedData,
server_ip: String,
event_tx: Sender<NetworkEvent>,
) {
// first, sends handshake
if hash == "root" {
perform_handshake(sd, username, server_ip, event_tx, false);
/*if let Some(data) = construct_message(
messages_structure::ROOTREQUEST,
Vec::new(),
generate_id(),
sd.cryptopair_ref(),
) {
if let Some(peerinfo) = sd.handshake_ref() {
sd.senders_ref()
.send_via(0, data, peerinfo.ip.to_string(), false);
}
}*/
} else {
// envoyer un datum request
}
}
#[cfg(test)]
mod tests {
use std::net::{IpAddr, Ipv4Addr};
use super::*;
/*#[test]
fn creating_cryptographic_signature() {
let mut hh = HandshakeHistory::new();
hh.add_new_handshake(
20,
"putain".to_string(),
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 1),
);
}*/
}

View File

@@ -1,49 +0,0 @@
use http::{Request, Response};
use p256::ecdsa::{
Signature, SigningKey, VerifyingKey,
signature::{Signer, Verifier},
};
use rand_core::OsRng;
struct KeyRegistration {
priv_key: SigningKey,
pub_key: VerifyingKey,
username: String,
}
impl KeyRegistration {
fn new(username: String) -> KeyRegistration {
let priv_key = SigningKey::random(&mut OsRng);
let pub_key = VerifyingKey::from(&priv_key);
KeyRegistration {
priv_key: priv_key,
pub_key: pub_key,
username: username,
}
}
}
async fn register_with_the_server(key: KeyRegistration) -> Result<bytes::Bytes, reqwest::Error> {
let client = reqwest::Client::new();
let pubkey_ser = key.pub_key.to_encoded_point(false);
let pubkey_str = hex::encode(pubkey_ser);
let uri = format!("https://jch.irif.fr:8443/peers/{}/key", key.username);
let resp = client.put(uri).send().await?.error_for_status()?;
resp.bytes().await
}
/*#[cfg(test)]
mod tests {
use super::*;
#[test]
fn key_genereation() {
let keys = KeyRegistration::new();
let pubkey = keys.pub_key;
let pubkey_ser = pubkey.to_encoded_point(false);
println!("string pubkey: {}", hex::encode(pubkey_ser));
println!("string privkey: {}", hex::encode(keys.priv_key.to_bytes()))
}
}*/

View File

@@ -1,37 +1,111 @@
use crate::cryptographic_signature::{CryptographicSignature, formatPubKey};
use bytes::Bytes;
use crate::NetworkEvent;
use crate::P2PSharedData;
use crate::cryptographic_signature::{CryptographicSignature, formatPubKey, sign_message};
use crate::get_socket_address;
use crate::message_handling::EventType;
use crate::messages_channels::MultipleSenders;
use crate::messages_structure::construct_message;
use crate::server_communication::generate_id;
use crossbeam_channel::{Receiver, Sender};
use std::collections::HashMap;
use std::net::SocketAddr;
use std::net::UdpSocket;
use std::str::FromStr;
use std::sync::{Arc, Mutex};
///
/// Registration with the server happens in two steps: first, the client
/// sends its cryptographic signature to the server using a PUT request over the HTTP API.
async fn register_with_the_server(crypto_pair: CryptographicSignature) -> Result<(), reqwest::Error>{
/// sends the cryptographic signature to the server using a PUT request over the HTTP API.
///
pub async fn register_with_the_server(
crypto_pair: &Arc<CryptographicSignature>,
server_uri: &String,
) -> Result<(), reqwest::Error> {
let client = reqwest::Client::new();
let uri = format!("https://jch.irif.fr:8443/peers/{}/key", crypto_pair.username);
let uri = format!("{0}/peers/{1}/key", server_uri, crypto_pair.username);
let encoded_point = crypto_pair.pub_key.to_encoded_point(false);
let pubkey_bytes = encoded_point.as_ref().to_vec();
let pubkey_bytes_minus = pubkey_bytes[1..].to_vec();
// In order to register with the server, a peer ϕ makes a PUT request to the URL /peers/ϕ/key with its 64-byte public key in the body
let res = client.put(uri)
.body(pubkey_bytes_minus)
.send()
.await?;
if res.status().is_success() {
println!("Successfully registered with the server.");
} else {
eprintln!("Failed to register with the server. Status: {}", res.status());
let str = hex::encode(res.bytes().await?);
eprintln!("erreur : {}", str);
}
let pubkey_bytes_minus = pubkey_bytes[1..].to_vec();
let res = client.put(uri).body(pubkey_bytes_minus).send().await?;
let res = res.error_for_status()?;
println!("register ip adresses");
Ok(())
}
/// It then
/// registers each of its IP addresses by sending a Hello request to the server.
/// After the client sends a Hello request to the server, the server will verify that the client is able
/// to receive requests by sending a Hello request to the client. If the client doesnt reply to the Hello
/// request with a properly signed message, its address will not be published by the server.
fn register_ip_addresses(crypto_pair: CryptographicSignature) {
let socket = UdpSocket::bind("127.0.0.1:4242");
//TODO
pub fn parse_addresses(input: &String) -> Vec<SocketAddr> {
let mut addrs = Vec::new();
for line in input.lines() {
let s = line.trim();
if s.is_empty() {
continue;
}
if let Ok(sock) = SocketAddr::from_str(s) {
addrs.push(sock);
}
}
addrs
}
///
/// registers the IP addresses by sending a Hello request to the server.
///
pub async fn perform_handshake(
sd: &P2PSharedData,
username: String,
ip: String,
event_tx: Sender<NetworkEvent>,
is_server_handshake: bool,
) {
println!("username: {}, ip: {}", username.clone(), ip.clone());
let crypto_pair = sd.cryptopair_ref();
let senders = sd.senders_ref();
let messages_list = sd.messages_list_ref();
let id = generate_id();
let server_addr_query = get_socket_address(username.clone(), ip.clone());
match server_addr_query.await {
Some(sockaddr_bytes) => {
sd.set_servername(username);
// first: &SocketAddr
let mut payload = Vec::new();
payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let hello_handshake = construct_message(1, payload, id, crypto_pair);
match hello_handshake {
Some(handshake_message) => {
senders.send_via(
0,
handshake_message,
sockaddr_bytes.to_string(),
is_server_handshake,
messages_list,
);
}
None => {}
}
}
None => {
let err_msg = format!("failed to retreive socket address:").to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
/*let mut list = messages_list.lock().expect("Failed to lock messages_list");
match list.get(&id) {
Some(_) => {
list.remove(&id);
}
None => {
list.insert(id, EventType::ServerHelloReply);
}
}
println!("message sent: {}", &id);*/
// 3. Perform the insertion
/*let mut buf = [0u8; 1024];
socket.recv_from(&mut buf).expect("receive failed");
let hello_handshake_received = UDPMessage::parse(buf.to_vec());
hello_handshake_received.display();*/
//TODO
}
#[cfg(test)]
@@ -39,12 +113,32 @@ mod tests {
// Note this useful idiom: importing names from outer (for mod tests) scope.
use super::*;
/*///
/// does the procedure to register with the server
///
#[tokio::test]
async fn creating_cryptographic_signature() {
let username = String::from("charlie_kirk");
async fn registering_with_server() {
let username = String::from("gameixtreize");
let server_uri = String::from("https://jch.irif.fr:8443");
let crypto_pair = CryptographicSignature::new(username);
if let Err(e) = register_with_the_server(crypto_pair).await {
eprintln!("Error during registration: {}", e);
}
}
if let Err(e) = register_with_the_server(crypto_pair, server_uri).await {
eprintln!("Error during registration: {}", e);
}
}*/
/*///
/// retreives the socket address of a given peer
///
#[tokio::test]
async fn retreive_socket_addr() {
let username = String::from("ipjkndqfshjldfsjlbsdfjhhj");
match get_socket_address(username).await {
Ok(body) => {
println!("{:?}", body);
}
Err(e) => {
eprintln!("Erreur HTTP: {}", e);
}
}
}*/
}

View File

@@ -0,0 +1,22 @@
use bytes::Bytes;
use rand::Rng;
pub async fn get_peer_list(server_address: String) -> Result<Bytes, reqwest::Error> {
let client = reqwest::Client::new();
let uri = format!("{}/peers/", server_address);
let res = client.get(uri).send().await?;
if res.status().is_success() {
println!("Successfully retreived the addresses.");
} else {
eprintln!(
"Failed to get the peers addresses from the server. Status: {}",
res.status()
);
}
let body: Bytes = res.bytes().await?;
Ok(body)
}
pub fn generate_id() -> i32 {
rand::rng().random_range(0..i32::MAX)
}

58
todo.md
View File

@@ -1,20 +1,32 @@
# Todo :
# Todo
## peer discovery
## handshake
# Todo
## peer discovery
- get rsquest to the uri /peers/
## registration with the server
- generation of the cryptographic key OK
- put request to the uri (check if the peer is already connected) OK
- udp handshakes
- get request to the uri /peers/key to get the public key of a peer
- get request to the uri /peers/key/addresses
- udp handshakes OK
- get request to the uri /peers/key to get the public key of a peer OK
- get request to the uri /peers/key/addresses OK
## handshake
- handshake structure
- handshake structure OK
- 5min timeout after handshake
- matain connection every 4 min
## data transfer
- request structure
- root/root reply structure
- datum/nodatum and datum structures
@@ -22,12 +34,40 @@
- setting in gui to act as a relay
- chunk, directory, big, bigdirectory structures
## fonctionnalités application
## nat traversal
- make hello and helloreply messages set the first extension bit to announce that peer is available for nat traversal
- implement actual nat traversal requests
- implement nat traversal :
- if hello/helloreply doesnt work with a peer, find a peer that supports nat traversal (server in priority) then begin protocol
fonctionnalités :
s'enregistrer avec le serveur OK
rechercher un pair
generer une clé publique OK
rechercher les fichiers d'un pair
telechargement des fichiers
choisir un dossier à partager
se deconnecter du réseau
choisir le nombre de canaux
handshake server DOING
se deconnecter du réseau DOING
## autre
socket ipv6
# FAIT
- choisir un pseudo OK
- get rsquest to the uri /peers/ OK
- generation of the cryptographic key OK
- put request to the uri (check if the peer is already connected) OK
- get request to the uri /peers/key to get the public key of a peer OK
- get request to the uri /peers/key/addresses OK
- udp handshakes OK
- handshake structure OK
- s'enregistrer avec le serveur OK
- generer une clé publique OK
- verifier signature OK
- 2 channels -> un pour envoyer et un pour recevoir OK