3 Commits

Author SHA1 Message Date
TIBERGHIEN corentin
c852c5bb4a root request 2026-01-13 17:13:35 +01:00
98fcc1a0b2 wip handling root request 2026-01-13 02:32:48 +01:00
8e279d9e24 wip datum 2026-01-11 22:12:08 +01:00
10 changed files with 599 additions and 424 deletions

View File

@@ -1,5 +1,5 @@
use client_network::{ use client_network::{
MerkleNode, MerkleTree, NetworkCommand, NetworkEvent, NodeHash, filename_to_string, ChunkNode, MerkleNode, MerkleTree, NetworkCommand, NetworkEvent, NodeHash, filename_to_string,
node_hash_to_hex_string, node_hash_to_hex_string,
}; };
use crossbeam_channel::{Receiver, Sender}; use crossbeam_channel::{Receiver, Sender};
@@ -27,7 +27,7 @@ pub struct P2PClientApp {
// GUI State // GUI State
status_message: String, status_message: String,
known_peers: Vec<(String, bool)>, known_peers: Vec<String>,
connect_address_input: String, connect_address_input: String,
connected_address: String, connected_address: String,
connect_name_input: String, connect_name_input: String,
@@ -49,11 +49,11 @@ pub struct P2PClientApp {
impl P2PClientApp { impl P2PClientApp {
pub fn new(cmd_tx: Sender<NetworkCommand>, event_rx: Receiver<NetworkEvent>) -> Self { pub fn new(cmd_tx: Sender<NetworkCommand>, event_rx: Receiver<NetworkEvent>) -> Self {
let (root_hash, tree_content) = MerkleNode::generate_base_tree(); //let (root_hash, tree_content) = MerkleNode::generate_base_tree();
let mut loaded_fs = HashMap::new(); let mut loaded_fs = HashMap::new();
let tree = MerkleTree::new(tree_content, root_hash); //let tree = MerkleTree::new(tree_content, root_hash);
loaded_fs.insert("bob".to_string(), tree); //loaded_fs.insert("bob".to_string(), tree);
Self { Self {
remaining: std::time::Duration::from_secs(0), remaining: std::time::Duration::from_secs(0),
@@ -62,7 +62,7 @@ impl P2PClientApp {
network_cmd_tx: cmd_tx, network_cmd_tx: cmd_tx,
network_event_rx: event_rx, network_event_rx: event_rx,
status_message: "Client Initialized. Awaiting network status...".to_string(), status_message: "Client Initialized. Awaiting network status...".to_string(),
known_peers: vec![("bob".to_string(), true)], known_peers: vec!["bob".to_string()],
connect_address_input: "https://jch.irif.fr:8443".to_string(), connect_address_input: "https://jch.irif.fr:8443".to_string(),
connected_address: "".to_string(), connected_address: "".to_string(),
loaded_fs, loaded_fs,
@@ -111,8 +111,8 @@ impl eframe::App for P2PClientApp {
todo!(); todo!();
self.status_message = format!("✅ Peer connected: {}", addr); self.status_message = format!("✅ Peer connected: {}", addr);
if !self.known_peers.contains(&(addr, true)) { if !self.known_peers.contains(&addr) {
self.known_peers.push((addr, true)); self.known_peers.push(addr);
} }
} }
NetworkEvent::PeerListUpdated(peers) => { NetworkEvent::PeerListUpdated(peers) => {
@@ -123,23 +123,41 @@ impl eframe::App for P2PClientApp {
NetworkEvent::FileTreeReceived(_peer_id, _) => { NetworkEvent::FileTreeReceived(_peer_id, _) => {
todo!(); todo!();
// self.loaded_tree_nodes.insert(_peer_id, tree); //self.loaded_tree_nodes.insert(_peer_id, tree);
self.status_message = "🔄 File tree updated successfully.".to_string(); //self.status_message = "🔄 File tree updated successfully.".to_string();
} }
NetworkEvent::FileTreeRootReceived(peer_id, root_hash) => { NetworkEvent::FileTreeRootReceived(peer_id, root_hash) => {
todo!(); // todo!();
// self.status_message = format!("🔄 Received Merkle Root from {}: {}", peer_id, &root_hash[..8]); /*self.status_message = format!(
// "🔄 Received Merkle Root from {}: {}",
// peer_id,
// self.active_peer_id = Some(peer_id.clone()); &root_hash[..8]
// );*/
//
// // Request the content of the root directory immediately if let Ok(chunknode) = ChunkNode::new(Vec::new()) {
// let _ = self.network_cmd_tx.send(NetworkCommand::RequestDirectoryContent( let mut data_map: HashMap<NodeHash, MerkleNode> = HashMap::new();
// peer_id, data_map.insert(root_hash, MerkleNode::Chunk(chunknode));
// root_hash, let tree = MerkleTree {
// )); data: data_map,
root: root_hash,
};
match &self.active_peer {
Some(activepeer) => {
self.loaded_fs.insert(activepeer.clone(), tree);
}
None => {}
}
println!("tree created");
}
//self.active_peer_id = Some(peer_id.clone());
// Request the content of the root directory immediately
/*let _ = self
.network_cmd_tx
.send(NetworkCommand::RequestDirectoryContent(peer_id, root_hash));*/
} }
NetworkEvent::Connected(ip) => { NetworkEvent::Connected(ip) => {
self.server_status = ServerStatus::Connected; self.server_status = ServerStatus::Connected;
@@ -343,28 +361,29 @@ impl eframe::App for P2PClientApp {
} else { } else {
for peer in &self.known_peers { for peer in &self.known_peers {
let is_active = let is_active =
self.active_peer.as_ref().map_or(false, |id| id == &peer.0); // if peer.id == self.active_peer_id self.active_peer.as_ref().map_or(false, |id| id == peer); // if peer.id == self.active_peer_id
let selectable; let selectable;
if &self.active_server == &peer.0 { if &self.active_server == peer {
selectable = selectable =
ui.selectable_label(is_active, format!("{} 📡 🌀", peer.0)) ui.selectable_label(is_active, format!("{} 📡 🌀", peer))
} else { } else {
selectable = ui.selectable_label(is_active, format!("{}", peer.0)); selectable = ui.selectable_label(is_active, format!("{}", peer));
} }
if selectable.clicked() { if selectable.clicked() {
// switch to displaying this peer's tree // switch to displaying this peer's tree
self.active_peer = Some(peer.0.clone()); self.active_peer = Some(peer.clone());
// Request root content if not loaded // Request root content if not loaded
if !self if !self
.loaded_fs .loaded_fs
.contains_key(self.active_peer.as_ref().unwrap()) .contains_key(self.active_peer.as_ref().unwrap())
{ {
todo!(); //todo!();
// let _ = self.network_cmd_tx.send(NetworkCommand::RequestDirectoryContent( let _ = self.network_cmd_tx.send(NetworkCommand::Discover(
// peer.clone(), peer.clone(),
// peer.clone(), "root".to_string(),
// )); self.connected_address.clone(),
));
} }
} }
selectable.context_menu(|ui| { selectable.context_menu(|ui| {
@@ -375,10 +394,10 @@ impl eframe::App for P2PClientApp {
.button("Utiliser le peer en tant que serveur") .button("Utiliser le peer en tant que serveur")
.clicked() .clicked()
{ {
self.active_server = peer.0.to_string(); self.active_server = peer.to_string();
let res = self.network_cmd_tx.send( let res = self.network_cmd_tx.send(
NetworkCommand::ServerHandshake( NetworkCommand::ServerHandshake(
peer.0.to_string(), peer.to_string(),
self.connected_address.clone(), self.connected_address.clone(),
), ),
); );
@@ -508,7 +527,13 @@ impl P2PClientApp {
entry.content_hash, entry.content_hash,
tree, tree,
depth + 1, depth + 1,
Some(entry.filename), Some(
entry
.filename
.as_slice()
.try_into()
.expect("incorrect size"),
),
); );
} }
}); });
@@ -529,7 +554,7 @@ impl P2PClientApp {
.enabled(true) .enabled(true)
.show(ui, |ui| { .show(ui, |ui| {
for child in &node.children_hashes { for child in &node.children_hashes {
self.draw_file_node(ui, child.clone(), tree, depth + 1, None); self.draw_file_node(ui, child.content_hash, tree, depth + 1, None);
} }
}); });
} }

View File

@@ -80,7 +80,7 @@ impl MerkleTree {
} }
} }
fn generate_random_file_node( /*fn generate_random_file_node(
storage: &mut HashMap<NodeHash, MerkleNode>, storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> { ) -> Result<NodeHash, String> {
let mut rng = rng(); let mut rng = rng();
@@ -110,9 +110,9 @@ fn generate_random_file_node(
storage.insert(hash, node); storage.insert(hash, node);
Ok(hash) Ok(hash)
} }
} }*/
fn generate_random_directory_node( /*fn generate_random_directory_node(
depth: u32, depth: u32,
max_depth: u32, max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>, storage: &mut HashMap<NodeHash, MerkleNode>,
@@ -172,7 +172,7 @@ fn generate_random_directory_node(
storage.insert(hash, node); storage.insert(hash, node);
Ok(hash) Ok(hash)
} }
} }*/
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct ChunkNode { pub struct ChunkNode {
@@ -208,7 +208,7 @@ impl ChunkNode {
// Helper struct // Helper struct
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct DirectoryEntry { pub struct DirectoryEntry {
pub filename: [u8; FILENAME_HASH_SIZE], pub filename: Vec<u8>,
pub content_hash: NodeHash, pub content_hash: NodeHash,
} }
@@ -240,7 +240,7 @@ pub struct BigNode {
} }
impl BigNode { impl BigNode {
pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> { /*pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len(); let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN { if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!( return Err(format!(
@@ -249,16 +249,17 @@ impl BigNode {
)); ));
} }
Ok(BigNode { children_hashes }) Ok(BigNode { children_hashes })
} }*/
} }
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct BigDirectoryNode { pub struct BigDirectoryNode {
pub children_hashes: Vec<NodeHash>, //pub children_hashes: Vec<NodeHash>,
pub children_hashes: Vec<DirectoryEntry>,
} }
impl BigDirectoryNode { impl BigDirectoryNode {
pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> { /*pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len(); let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN { if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!( return Err(format!(
@@ -267,6 +268,14 @@ impl BigDirectoryNode {
)); ));
} }
Ok(BigDirectoryNode { children_hashes }) Ok(BigDirectoryNode { children_hashes })
}*/
pub fn new(entries: Vec<DirectoryEntry>) -> Result<Self, String> {
if entries.len() > MAX_DIRECTORY_ENTRIES {
return Err(format!("Directory exceeds {} bytes", entries.len()));
}
Ok(BigDirectoryNode {
children_hashes: entries,
})
} }
} }
@@ -301,14 +310,14 @@ impl MerkleNode {
} }
MerkleNode::BigDirectory(node) => { MerkleNode::BigDirectory(node) => {
for hash in &node.children_hashes { for hash in &node.children_hashes {
bytes.extend_from_slice(hash); bytes.extend_from_slice(&hash.content_hash);
} }
} }
} }
bytes bytes
} }
pub fn generate_random_tree( /*pub fn generate_random_tree(
max_depth: u32, max_depth: u32,
) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> { ) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new(); let mut storage = HashMap::new();
@@ -317,9 +326,9 @@ impl MerkleNode {
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?; let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage)) Ok((root_hash, storage))
} }*/
pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) { /*pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
let mut res = HashMap::new(); let mut res = HashMap::new();
let node1 = MerkleNode::Chunk(ChunkNode::new_random()); let node1 = MerkleNode::Chunk(ChunkNode::new_random());
@@ -369,5 +378,5 @@ impl MerkleNode {
res.insert(root_hash, root); res.insert(root_hash, root);
(root_hash, res) (root_hash, res)
} }*/
} }

View File

@@ -1 +1,96 @@
fn parse_received_datum(recevied_datum: Vec<u8>) {} use crate::{BigDirectoryNode, DirectoryEntry, DirectoryNode, MerkleNode, MerkleTree, NodeHash};
use sha2::{Digest, Sha256};
const CHUNK: u8 = 0;
const DIRECTORY: u8 = 1;
const BIG: u8 = 2;
const BIGDIRECTORY: u8 = 3;
fn parse_received_datum(recevied_datum: Vec<u8>, datum_length: usize, mut tree: MerkleTree) {
if datum_length > recevied_datum.len() {
return;
}
if datum_length < 32 + 64 {
return;
}
let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error");
let sigstart = datum_length - 64;
let value = &recevied_datum[32..sigstart];
let value_slice = value.to_vec();
let signature: [u8; 32] = recevied_datum[sigstart..datum_length]
.try_into()
.expect("Taille incorrecte");
let datum_type = value_slice[0];
match datum_type {
CHUNK => {
tree.data.insert(
hash_name,
MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
);
}
DIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.to_vec(),
content_hash: hash,
});
}
let current = DirectoryNode::new(dir_entries);
match current {
Ok(current_node) => {
tree.data
.insert(hash_name, MerkleNode::Directory(current_node));
}
Err(e) => {
println!("{}", e);
}
}
}
BIG => {
let chlidren: Vec<NodeHash> = Vec::new();
tree.data.insert(
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: chlidren,
}),
);
}
BIGDIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.to_vec(),
content_hash: hash,
});
}
let current = BigDirectoryNode::new(dir_entries);
match current {
Ok(current_node) => {
tree.data
.insert(hash_name, MerkleNode::BigDirectory(current_node));
}
Err(e) => {
println!("{}", e);
}
}
}
_ => {}
}
}

View File

@@ -12,8 +12,10 @@ use crate::{
cryptographic_signature::CryptographicSignature, cryptographic_signature::CryptographicSignature,
message_handling::EventType, message_handling::EventType,
messages_channels::{MultipleSenders, start_receving_thread}, messages_channels::{MultipleSenders, start_receving_thread},
messages_structure::{ROOTREQUEST, construct_message},
peers_refresh::HandshakeHistory,
registration::{ registration::{
get_socket_address, parse_addresses, register_ip_addresses, register_with_the_server, get_socket_address, parse_addresses, perform_handshake, register_with_the_server,
}, },
server_communication::{generate_id, get_peer_list}, server_communication::{generate_id, get_peer_list},
}; };
@@ -33,6 +35,7 @@ pub struct P2PSharedData {
shared_messageslist: Arc<Mutex<HashMap<i32, EventType>>>, shared_messageslist: Arc<Mutex<HashMap<i32, EventType>>>,
shared_senders: Arc<MultipleSenders>, shared_senders: Arc<MultipleSenders>,
server_name: Arc<Mutex<String>>, server_name: Arc<Mutex<String>>,
handshake_peers: Arc<HandshakeHistory>,
} }
impl P2PSharedData { impl P2PSharedData {
@@ -51,12 +54,14 @@ impl P2PSharedData {
let senders = MultipleSenders::new(1, &shared_socket, cmd_tx); let senders = MultipleSenders::new(1, &shared_socket, cmd_tx);
let shared_senders = Arc::new(senders); let shared_senders = Arc::new(senders);
let server_name = Arc::new(Mutex::new("".to_string())); let server_name = Arc::new(Mutex::new("".to_string()));
let handhsake_peers = Arc::new(HandshakeHistory::new());
Ok(P2PSharedData { Ok(P2PSharedData {
shared_socket: shared_socket, shared_socket: shared_socket,
shared_cryptopair: shared_cryptopair, shared_cryptopair: shared_cryptopair,
shared_messageslist: shared_messageslist, shared_messageslist: shared_messageslist,
shared_senders: shared_senders, shared_senders: shared_senders,
server_name: server_name, server_name: server_name,
handshake_peers: handhsake_peers,
}) })
} }
pub fn socket(&self) -> Arc<UdpSocket> { pub fn socket(&self) -> Arc<UdpSocket> {
@@ -87,6 +92,9 @@ impl P2PSharedData {
pub fn cryptopair_ref(&self) -> &CryptographicSignature { pub fn cryptopair_ref(&self) -> &CryptographicSignature {
&*self.shared_cryptopair &*self.shared_cryptopair
} }
pub fn handshake_ref(&self) -> &HandshakeHistory {
&*self.handshake_peers
}
pub fn messages_list_ref(&self) -> &Mutex<HashMap<i32, EventType>> { pub fn messages_list_ref(&self) -> &Mutex<HashMap<i32, EventType>> {
&*self.shared_messageslist &*self.shared_messageslist
@@ -115,6 +123,8 @@ pub enum NetworkCommand {
RequestChunk(String, String), RequestChunk(String, String),
Disconnect(), Disconnect(),
ResetServerPeer(), ResetServerPeer(),
Discover(String, String, String),
GetChildren(String, String),
// ... // ...
} }
@@ -125,10 +135,10 @@ pub enum NetworkEvent {
Disconnected(), Disconnected(),
Error(String), Error(String),
PeerConnected(String), PeerConnected(String),
PeerListUpdated(Vec<(String, bool)>), PeerListUpdated(Vec<String>),
FileTreeReceived(String, Vec<MerkleNode>), // peer_id, content FileTreeReceived(String, Vec<MerkleNode>), // peer_id, content
DataReceived(String, MerkleNode), DataReceived(String, MerkleNode),
FileTreeRootReceived(String, String), FileTreeRootReceived(String, NodeHash),
HandshakeFailed(), HandshakeFailed(),
ServerHandshakeFailed(String), ServerHandshakeFailed(String),
// ... // ...
@@ -163,6 +173,8 @@ pub fn start_p2p_executor(
// Use tokio to spawn the asynchronous networking logic // Use tokio to spawn the asynchronous networking logic
tokio::task::spawn(async move { tokio::task::spawn(async move {
// P2P/Networking Setup goes here // P2P/Networking Setup goes here
let handshake_history = Arc::new(Mutex::new(HandshakeHistory::new()));
let handshake_clone = handshake_history.clone();
println!("Network executor started."); println!("Network executor started.");
@@ -172,62 +184,13 @@ pub fn start_p2p_executor(
if let Ok(cmd) = cmd_rx.try_recv() { if let Ok(cmd) = cmd_rx.try_recv() {
match cmd { match cmd {
NetworkCommand::ServerHandshake(username, ip) => { NetworkCommand::ServerHandshake(username, ip) => {
println!("server handshake called");
if let Some(sd) = shared_data.as_ref() { if let Some(sd) = shared_data.as_ref() {
println!("username:{}, ip:{}", username, ip); start_receving_thread(sd, event_tx.clone(), &handshake_clone);
let server_addr_query = get_socket_address(username.clone(), ip);
match server_addr_query.await {
Ok(sockaddr_bytes) => {
match String::from_utf8(sockaddr_bytes.to_vec()) {
Ok(s) => {
let addresses = parse_addresses(&s);
if let Some(first) = addresses.first() {
sd.set_servername(username);
// first: &SocketAddr
start_receving_thread(
sd,
*first, // copie le SocketAddr (implémente Copy pour SocketAddr)
event_tx.clone(), //
);
register_ip_addresses(
sd.cryptopair_ref(),
first.to_string(),
sd.senders_ref(),
sd.messages_list_ref(),
generate_id(),
);
//let res = event_tx
// .send(NetworkEvent::());
} else {
//let res = event_tx.send(NetworkEvent::Error());
let err_msg = format!(
"no valid socket addresses found in: {}",
s
)
.to_string();
let res = let res =
event_tx.send(NetworkEvent::Error(err_msg)); perform_handshake(&sd, username, ip, event_tx.clone(), true).await;
} } else {
} println!("no shared data");
Err(e) => {
//let res = event_tx.send(NetworkEvent::Error());
let err_msg = format!(
"invalid UTF-8 in socket address bytes: {}",
e
)
.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
}
Err(e) => {
let err_msg =
format!("failed to retreive socket address: {}", e)
.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
} }
} }
NetworkCommand::ConnectPeer(addr) => { NetworkCommand::ConnectPeer(addr) => {
@@ -240,6 +203,56 @@ pub fn start_p2p_executor(
NetworkCommand::RequestFileTree(_) => { NetworkCommand::RequestFileTree(_) => {
println!("[Network] RequestFileTree() called"); println!("[Network] RequestFileTree() called");
} }
NetworkCommand::Discover(username, hash, ip) => {
// envoie un handshake au peer, puis un root request
if let Some(sd) = shared_data.as_ref() {
let res = {
let m = handshake_clone.lock().unwrap();
m.get_peer_info_username(username.clone()).cloned()
};
match res {
Some(peerinfo) => {
// envoyer un root request
let rootrequest = construct_message(
ROOTREQUEST,
Vec::new(),
generate_id(),
sd.cryptopair_ref(),
);
match rootrequest {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref().send_via(
0,
resp_msg,
peerinfo.ip.to_string(),
false,
sd.messages_list_ref(),
);
}
}
}
None => {
// envoyer un handshake
let res = perform_handshake(
&sd,
username,
ip,
event_tx.clone(),
false,
)
.await;
}
}
} else {
println!("no shared data");
}
}
NetworkCommand::GetChildren(username, hash) => {
// envoie un datum request au peer
}
NetworkCommand::RequestDirectoryContent(_, _) => { NetworkCommand::RequestDirectoryContent(_, _) => {
println!("[Network] RequestDirectoryContent() called"); println!("[Network] RequestDirectoryContent() called");
} }
@@ -295,11 +308,11 @@ pub fn start_p2p_executor(
match get_peer_list(ip).await { match get_peer_list(ip).await {
Ok(body) => match String::from_utf8(body.to_vec()) { Ok(body) => match String::from_utf8(body.to_vec()) {
Ok(peers_list) => { Ok(peers_list) => {
let mut peers: Vec<(String, bool)> = Vec::new(); let mut peers: Vec<String> = Vec::new();
let mut current = String::new(); let mut current = String::new();
for i in peers_list.chars() { for i in peers_list.chars() {
if i == '\n' { if i == '\n' {
peers.push((current.clone(), false)); peers.push(current.clone());
current.clear(); current.clear();
} else { } else {
current.push(i); current.push(i);

View File

@@ -1,11 +1,13 @@
use crate::{ use crate::{
NetworkEvent, NetworkEvent, NodeHash,
cryptographic_signature::{ cryptographic_signature::{
CryptographicSignature, get_peer_key, sign_message, verify_signature, CryptographicSignature, get_peer_key, sign_message, verify_signature,
}, },
messages_channels::MultipleSenders, messages_channels::MultipleSenders,
messages_structure::construct_message, messages_structure::construct_message,
peers_refresh::HandshakeHistory,
registration, registration,
server_communication::generate_id,
}; };
use std::{collections::HashMap, net::SocketAddr}; use std::{collections::HashMap, net::SocketAddr};
use std::{ use std::{
@@ -14,9 +16,7 @@ use std::{
}; };
pub enum EventType { pub enum EventType {
ServerHelloReply, SendRootRequest,
PeerHelloReply,
PeerHello,
} }
const ID: usize = 4; const ID: usize = 4;
@@ -42,11 +42,12 @@ pub fn handle_recevied_message(
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>, messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
recevied_message: &Vec<u8>, recevied_message: &Vec<u8>,
crypto_pair: &CryptographicSignature, crypto_pair: &CryptographicSignature,
socket_addr: &SocketAddr, //socket_addr: &SocketAddr,
senders: &MultipleSenders, senders: &MultipleSenders,
server_name: &String, server_name: &String,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr, ip: SocketAddr,
handhsake_history: &Arc<Mutex<HandshakeHistory>>,
) { ) {
if recevied_message.len() < 4 { if recevied_message.len() < 4 {
return; return;
@@ -70,13 +71,27 @@ pub fn handle_recevied_message(
} }
} }
let resp = parse_message(recevied_message.to_vec(), id, crypto_pair, cmd_tx, ip); let resp = parse_message(
recevied_message.to_vec(),
id,
crypto_pair,
cmd_tx,
ip,
messages_list,
handhsake_history,
);
match resp { match resp {
None => {} None => {}
Some(resp_msg) => { Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg); println!("msg_sent:{:?}", resp_msg);
senders.send_via(0, resp_msg, ip.to_string(), is_resp_to_server_handshake); senders.send_via(
0,
resp_msg,
ip.to_string(),
is_resp_to_server_handshake,
messages_list,
);
} }
} }
@@ -152,7 +167,10 @@ pub fn parse_message(
crypto_pair: &CryptographicSignature, crypto_pair: &CryptographicSignature,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr, ip: SocketAddr,
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
handhsake_history_mutex: &Arc<Mutex<HandshakeHistory>>,
) -> Option<Vec<u8>> { ) -> Option<Vec<u8>> {
let mut handhsake_history = handhsake_history_mutex.lock().unwrap();
let cmd_tx_clone = cmd_tx.clone(); let cmd_tx_clone = cmd_tx.clone();
let id_bytes: [u8; 4] = received_message[0..ID] let id_bytes: [u8; 4] = received_message[0..ID]
@@ -166,20 +184,29 @@ pub fn parse_message(
.expect("Taille incorrecte"); .expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes) as usize; let msg_length = u16::from_be_bytes(length_bytes) as usize;
// verify signature // verify signature
match msgtype { match msgtype {
HELLO | HELLOREPLY | ROOTREPLY | NODATUM | NATTRAVERSALREQUEST | NATTRAVERSALREQUEST2 => { HELLO | HELLOREPLY | NODATUM | NATTRAVERSALREQUEST | NATTRAVERSALREQUEST2 => {
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength); println!("name received length: {}", ilength);
let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize]; let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let received_username = String::from_utf8(received_name.to_vec()); let received_username = String::from_utf8(received_name.to_vec());
match received_username { match received_username {
Ok(username) => { Ok(username) => {
let peer_pubkey = tokio::runtime::Runtime::new() let peer_pubkey =
match handhsake_history.get_peer_info_username(username.clone()) {
Some(peerinfo) => peerinfo.pubkey,
_ => tokio::runtime::Runtime::new()
.unwrap() .unwrap()
.block_on(get_peer_key(&username)) .block_on(get_peer_key(&username))
.expect("failed to retrieve public key"); .expect("failed to retrieve public key"),
};
match msgtype {
HELLOREPLY => {
handhsake_history.add_new_handshake(peer_pubkey, "".to_string(), ip);
}
_ => {}
}
let signature: [u8; SIGNATURE] = received_message let signature: [u8; SIGNATURE] = received_message
[LENGTH + msg_length..LENGTH + msg_length + SIGNATURE] [LENGTH + msg_length..LENGTH + msg_length + SIGNATURE]
.try_into() .try_into()
@@ -198,6 +225,22 @@ pub fn parse_message(
} }
} }
} }
ROOTREPLY => {
let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength);
if let Some(peerinfo) = handhsake_history.get_peer_info_ip(ip.to_string()) {
if !verify_signature(peerinfo.pubkey, &received_message) {
println!(
"incorrect signature from given peer: {}, ignoring message of type {} with id {}",
&peerinfo.username, received_message[ID], id
);
return None;
} else {
println!("signature verified");
}
}
}
_ => {} _ => {}
} }
@@ -248,7 +291,40 @@ pub fn parse_message(
// //
// //
// ajoute a la liste des peers handshake // ajoute a la liste des peers handshake
HELLOREPLY => {} HELLOREPLY => {
// ajoute l'username a la liste des peers handshake
let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH]
.try_into()
.expect("incorrect size"),
);
let received_username =
&received_message[LENGTH + EXTENSIONS..LENGTH + received_length as usize];
handhsake_history.update_peer_info(
ip.to_string(),
String::from_utf8(received_username.to_vec()).expect("invalid conversion"),
);
// verifie s'il faut renvoyer un root request
let guard = messages_list.lock().expect("Échec du verrouillage");
let res = guard.get(&id);
match res {
Some(ev) => {
match ev {
EventType::SendRootRequest => {
// envoyer la root request
let rootrequest = construct_message(
ROOTREQUEST,
Vec::new(),
generate_id(),
crypto_pair,
);
return rootrequest;
}
}
}
None => {}
}
}
// //
// ROOTREQUEST // ROOTREQUEST
// //
@@ -256,7 +332,26 @@ pub fn parse_message(
// //
// ROOTREPLY // ROOTREPLY
// //
// envoie un datum request ROOTREPLY => {
// recuperer le pseudo du peers ayant repondu
let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string());
match peers_exist {
Some(peerinfo) => {
// envoyer le hash a la gui
let received_hash: NodeHash = received_message[LENGTH..(32 + LENGTH)]
.try_into()
.expect("incorrect size");
let res = cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived(
peerinfo.username.clone(),
received_hash,
));
println!("file tree sent")
}
None => {
eprintln!("no peers found");
}
}
}
// //
// DATUMREQUEST // DATUMREQUEST
// //
@@ -328,6 +423,6 @@ pub fn parse_message(
// //
// envoie OK à S puis envoie un ping à S // envoie OK à S puis envoie un ping à S
_ => return None, _ => return None,
} };
constructed_message constructed_message
} }

View File

@@ -2,6 +2,7 @@ use crate::P2PSharedData;
use crate::cryptographic_signature::CryptographicSignature; use crate::cryptographic_signature::CryptographicSignature;
use crate::message_handling::EventType; use crate::message_handling::EventType;
use crate::message_handling::handle_recevied_message; use crate::message_handling::handle_recevied_message;
use crate::peers_refresh::HandshakeHistory;
use std::collections::HashMap; use std::collections::HashMap;
use std::net::SocketAddr; use std::net::SocketAddr;
use std::net::UdpSocket; use std::net::UdpSocket;
@@ -21,9 +22,9 @@ pub struct MultipleSenders {
} }
pub struct Message { pub struct Message {
payload: Vec<u8>, pub payload: Vec<u8>,
address: String, pub address: String,
is_resp_to_server_handshake: bool, pub is_resp_to_server_handshake: bool,
} }
struct RetryMessage { struct RetryMessage {
@@ -205,28 +206,35 @@ impl MultipleSenders {
data: Vec<u8>, data: Vec<u8>,
remote_addr: String, remote_addr: String,
is_resp_to_server_handshake: bool, is_resp_to_server_handshake: bool,
messages_list: &Mutex<HashMap<i32, EventType>>,
) { ) {
println!( println!(
"is_resp_to_server_handshake {}", "is_resp_to_server_handshake {}",
is_resp_to_server_handshake is_resp_to_server_handshake
); );
if let Some(sender) = self.senders.get(channel_idx) { let msg_to_send = Message {
let _ = sender.send(Message { payload: data.clone(),
payload: data,
address: remote_addr, address: remote_addr,
is_resp_to_server_handshake, is_resp_to_server_handshake,
}); };
if let Some(sender) = self.senders.get(channel_idx) {
let _ = sender.send(msg_to_send);
}
if !is_resp_to_server_handshake {
let mut guard = messages_list.lock().unwrap();
let message_id: [u8; 4] = data[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
guard.insert(id, EventType::SendRootRequest);
} }
} }
}
/*pub fn start_receving_thread( /*pub fn start_receving_thread(
socket: &Arc<UdpSocket>, socket: &Arc<UdpSocket>,
messages_list: &Arc<HashMap<i32, EventType>>, messages_list: &Arc<HashMap<i32, EventType>>,
crypto_pair: &Arc<CryptographicSignature>, crypto_pair: &Arc<CryptographicSignature>,
socket_addr: SocketAddr, socket_addr: SocketAddr,
senders: &Arc<MultipleSenders>, senders: &Arc<MultipleSenders>,
) { ) {
let sock_clone = Arc::clone(socket); let sock_clone = Arc::clone(socket);
let cryptopair_clone = Arc::clone(crypto_pair); let cryptopair_clone = Arc::clone(crypto_pair);
let senders_clone = Arc::clone(senders); let senders_clone = Arc::clone(senders);
@@ -251,18 +259,21 @@ impl MultipleSenders {
} }
} }
}); });
}*/ }*/
}
pub fn start_receving_thread( pub fn start_receving_thread(
shared_data: &P2PSharedData, shared_data: &P2PSharedData,
socket_addr: SocketAddr,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
handshake_history: &Arc<Mutex<HandshakeHistory>>,
) { ) {
let sock_clone = shared_data.socket(); let sock_clone = shared_data.socket();
let cryptopair_clone = shared_data.cryptopair(); let cryptopair_clone = shared_data.cryptopair();
let senders_clone = shared_data.senders(); let senders_clone = shared_data.senders();
let messages_clone = shared_data.messages_list(); let messages_clone = shared_data.messages_list();
let servername_clone = shared_data.servername(); let servername_clone = shared_data.servername();
let handshake_clone = handshake_history.clone();
thread::spawn(move || { thread::spawn(move || {
let mut buf = [0u8; 1024]; let mut buf = [0u8; 1024];
loop { loop {
@@ -275,11 +286,11 @@ pub fn start_receving_thread(
&messages_clone, &messages_clone,
&received_data, &received_data,
&cryptopair_clone, &cryptopair_clone,
&socket_addr,
&senders_clone, &senders_clone,
&servername_clone, &servername_clone,
cmd_tx.clone(), cmd_tx.clone(),
src, src,
&handshake_clone,
); );
} }
Err(e) => eprintln!("Erreur de réception: {}", e), Err(e) => eprintln!("Erreur de réception: {}", e),

View File

@@ -14,7 +14,7 @@ const OK: u8 = 128;
const ERROR: u8 = 129; const ERROR: u8 = 129;
const HELLO: u8 = 1; const HELLO: u8 = 1;
const HELLOREPLY: u8 = 130; const HELLOREPLY: u8 = 130;
const ROOTREQUEST: u8 = 2; pub const ROOTREQUEST: u8 = 2;
const ROOTREPLY: u8 = 131; const ROOTREPLY: u8 = 131;
const DATUMREQUEST: u8 = 3; const DATUMREQUEST: u8 = 3;
const NODATUM: u8 = 133; const NODATUM: u8 = 133;
@@ -46,11 +46,11 @@ pub fn construct_message(
let signature = sign_message(crypto_pair, &message); let signature = sign_message(crypto_pair, &message);
return Some(signature); return Some(signature);
} }
PING | OK => { PING | OK | ROOTREQUEST => {
message.extend_from_slice(&0u16.to_be_bytes()); message.extend_from_slice(&0u16.to_be_bytes());
return Some(message); return Some(message);
} }
ERROR | ROOTREQUEST | DATUMREQUEST => { ERROR | DATUMREQUEST => {
message.extend_from_slice(&payload.len().to_be_bytes()); message.extend_from_slice(&payload.len().to_be_bytes());
message.extend_from_slice(&payload); message.extend_from_slice(&payload);
return Some(message); return Some(message);
@@ -67,176 +67,3 @@ pub fn construct_message(
} }
None None
} }
pub struct UDPMessage {
id: u32,
msg_type: u8,
length: u16,
body: Vec<u8>,
signature: Vec<u8>,
}
pub struct HandshakeMessage {
pub id: u32,
msg_type: u8,
length: u16,
extensions: u32,
pub name: Vec<u8>,
pub signature: Vec<u8>,
}
pub struct NatTraversal {}
impl UDPMessage {
pub fn ping(id: u32) -> UDPMessage {
UDPMessage {
id: id,
msg_type: 0,
length: 0,
body: vec![0; 985],
signature: vec![0; 32],
}
}
pub fn error(id: u32) -> UDPMessage {
UDPMessage {
id: id,
msg_type: 129,
length: 0,
body: vec![0; 985],
signature: vec![0; 32],
}
}
pub fn parse(received_message: Vec<u8>) -> UDPMessage {
let id_bytes: [u8; 4] = received_message[0..4]
.try_into()
.expect("Taille incorrecte");
let length_bytes: [u8; 2] = received_message[5..7]
.try_into()
.expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes);
let name_bytes = &received_message[7..msg_length as usize + 8];
let signature_bytes =
&received_message[msg_length as usize + 8..msg_length as usize + 9 + 32];
UDPMessage {
id: u32::from_be_bytes(id_bytes),
msg_type: received_message[4],
length: u16::from_be_bytes(length_bytes),
body: name_bytes.to_vec(),
signature: signature_bytes.to_vec(),
}
}
pub fn display(&self) {
println!("ID: {:?}", self.id);
println!("Message Type: {}", self.msg_type);
println!("Length: {:?}", self.length);
let good_length = usize::min(self.length as usize, 985);
println!("name: {:?}", &self.body[..good_length]);
println!("Signature: {:?}", self.signature);
}
}
impl HandshakeMessage {
pub fn display(&self) {
println!("ID: {:?}", self.id);
println!("Message Type: {}", self.msg_type);
println!("Length: {:?}", self.length);
println!("extensions: {:?}", self.extensions);
println!("name: {:?}", &self.name[..(self.length - 4) as usize]);
println!("Signature: {:?}", self.signature);
}
pub fn hello(id: u32, length: u16, username: String) -> HandshakeMessage {
let name_vec = username.trim_end_matches(char::from(0)).as_bytes().to_vec();
HandshakeMessage {
id: id,
msg_type: 1,
length: length,
extensions: 0,
name: name_vec,
signature: vec![0; 64],
}
}
pub fn helloReply(id: u32, length: u16, username: String) -> HandshakeMessage {
let name_vec = username.trim_end_matches(char::from(0)).as_bytes().to_vec();
HandshakeMessage {
id: id,
msg_type: 130,
length: length,
extensions: 0,
name: name_vec,
signature: vec![0; 64],
}
}
pub fn serialize(&self) -> Vec<u8> {
let mut out = Vec::with_capacity(4 + 1 + 2 + 4 + self.name.len() + self.signature.len());
// id: u32 little-endian
out.extend_from_slice(&self.id.to_be_bytes());
// msg_type: u8
out.push(self.msg_type);
out.extend_from_slice(&self.length.to_be_bytes());
out.extend_from_slice(&self.extensions.to_be_bytes());
out.extend_from_slice(&self.name);
out.extend_from_slice(&self.signature);
out
}
pub fn parse(received_message: Vec<u8>) -> HandshakeMessage {
let id_bytes: [u8; 4] = received_message[0..4]
.try_into()
.expect("Taille incorrecte");
let length_bytes: [u8; 2] = received_message[5..7]
.try_into()
.expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes);
let extensions_bytes: [u8; 4] = received_message[7..11]
.try_into()
.expect("Taille incorrecte");
let name_bytes = &received_message[11..(11 + msg_length - 4) as usize];
let signature_bytes =
&received_message[(11 + msg_length - 4) as usize..(11 + msg_length - 4 + 64) as usize];
HandshakeMessage {
id: u32::from_be_bytes(id_bytes),
msg_type: received_message[4],
length: u16::from_be_bytes(length_bytes),
extensions: u32::from_be_bytes(extensions_bytes),
name: name_bytes.to_vec(),
signature: signature_bytes.to_vec(),
}
}
}
#[cfg(test)]
mod tests {
// Note this useful idiom: importing names from outer (for mod tests) scope.
use super::*;
/// creates an handshake message
#[tokio::test]
async fn creating_handshake_msg() {
let username = String::from("charlie_kirk");
let handshake = HandshakeMessage::hello(0, 12, username);
handshake.display();
}
/// parses an handshake message
#[tokio::test]
async fn parse_handshakemessage() {
let username = String::from("charlie_kirk");
let handshake = HandshakeMessage::hello(0, 12, username);
let ser = handshake.serialize();
let parsed = HandshakeMessage::parse(ser);
handshake.display();
parsed.display();
}
}

View File

@@ -3,7 +3,7 @@
use std::{ use std::{
collections::{HashMap, VecDeque}, collections::{HashMap, VecDeque},
net::{AddrParseError, SocketAddr}, net::{AddrParseError, Ipv4Addr, SocketAddr},
ops::Add, ops::Add,
process::Command, process::Command,
sync::{Arc, Mutex}, sync::{Arc, Mutex},
@@ -11,54 +11,134 @@ use std::{
time::{self, Duration, SystemTime}, time::{self, Duration, SystemTime},
}; };
use crate::NetworkEvent;
use crate::{
P2PSharedData, construct_message, generate_id, messages_structure,
registration::perform_handshake,
};
use crossbeam_channel::{Receiver, Sender};
use p256::ecdsa::VerifyingKey;
#[derive(Debug, Clone)]
pub struct PeerInfo { pub struct PeerInfo {
username: String, pub username: String,
ip: SocketAddr, pub pubkey: VerifyingKey,
pub ip: SocketAddr,
} }
pub struct HandshakeHistory { pub struct HandshakeHistory {
time_k_ip_v: HashMap<u64, u64>, //time_k_ip_v: HashMap<u64, u64>,
ip_k_peerinfo_v: HashMap<u64, PeerInfo>, username_k_peerinfo_v: HashMap<String, PeerInfo>,
ip_k_peerinfo_v: HashMap<String, PeerInfo>,
} }
impl HandshakeHistory { impl HandshakeHistory {
pub fn new() -> HandshakeHistory { pub fn new() -> HandshakeHistory {
HandshakeHistory { HandshakeHistory {
time_k_ip_v: HashMap::new(), //time_k_ip_v: HashMap::new(),
//ip_k_peerinfo_v: HashMap::new(),
username_k_peerinfo_v: HashMap::new(),
ip_k_peerinfo_v: HashMap::new(), ip_k_peerinfo_v: HashMap::new(),
} }
} }
pub fn update_handshake(&mut self) { /*pub fn update_handshake(&self) {
let hashmap_shared = Arc::new(self.username_k_peerinfo_v);
thread::spawn(move || { thread::spawn(move || {
let mut times_to_check = VecDeque::new(); let selfhashmap = hashmap_shared.clone();
let current_time: u64 = SystemTime::now()
.duration_since(time::UNIX_EPOCH)
.expect("system time before UNIX EPOCH")
.add(Duration::from_secs(10))
.as_secs();
// adds 10 seconds in the queue every 10 seconds
loop { loop {
let mut child = Command::new("sleep").arg("9").spawn().unwrap(); for peer in selfhashmap.keys() {
let _result = child.wait().unwrap(); let peer_ip = selfhashmap.get(peer);
for n in 0..9 { // send ping
// push 9 successive seconds
times_to_check.push_back(current_time + n);
// gestion d'erreur si verrou mort
} }
let mut child = Command::new("sleep").arg("10").spawn().unwrap();
let _result = child.wait().unwrap();
}
});
}*/
pub fn get_peer_info_username(&self, username: String) -> Option<&PeerInfo> {
self.username_k_peerinfo_v.get(&username).clone()
}
pub fn get_peer_info_ip(&self, ip: String) -> Option<&PeerInfo> {
self.ip_k_peerinfo_v.get(&ip).clone()
}
pub fn update_handshake(&self) {
// clone the map so we own it (cheap if PeerInfo is Clone)
let map_clone: Arc<HashMap<String, PeerInfo>> =
Arc::new(self.username_k_peerinfo_v.clone());
//let map_ip_clone: Arc<HashMap<String, PeerInfo>> = Arc::new(self.ip_k_peerinfo_v.clone());
let map_for_thread = Arc::clone(&map_clone);
thread::spawn(move || {
loop {
// Arc<HashMap<..>> derefs to &HashMap so these reads work
for (peer, peerinfo) in map_for_thread.iter() {
// send ping to peerinfo
}
thread::sleep(Duration::from_secs(10));
} }
}); });
} }
pub fn add_new_handshake(&mut self, hash: u64, username: String, ip: SocketAddr) { pub fn update_peer_info(&mut self, ip: String, username: String) {
let current_time: u64 = SystemTime::now() let peerinfo = self.get_peer_info_ip(ip.clone());
.duration_since(time::UNIX_EPOCH) match peerinfo {
.expect("system time before UNIX EPOCH") Some(peer_info) => match ip.parse::<SocketAddr>() {
.as_secs(); Ok(addr) => {
println!("time:{}", current_time); let new_peer_info = PeerInfo {
/*self.time_k_hash_v.insert(current_time, hash); username: username.clone(),
self.hash_k_peerinfo_v pubkey: peer_info.pubkey,
.insert(hash, PeerInfo { username, ip });*/ ip: addr,
};
self.ip_k_peerinfo_v.insert(ip, new_peer_info.clone());
self.username_k_peerinfo_v.insert(username, new_peer_info);
}
Err(e) => eprintln!("parse error: {}", e),
},
None => {
eprintln!("no peer info found in hashmap")
}
}
}
pub fn add_new_handshake(&mut self, hash: VerifyingKey, username: String, ip: SocketAddr) {
let peerinfo = PeerInfo {
username: username.clone(),
pubkey: hash,
ip,
};
self.username_k_peerinfo_v
.insert(username, peerinfo.clone());
self.ip_k_peerinfo_v
.insert(ip.to_string(), peerinfo.clone());
}
}
pub fn perform_discover(
username: String,
hash: String,
sd: &P2PSharedData,
server_ip: String,
event_tx: Sender<NetworkEvent>,
) {
// first, sends handshake
if hash == "root" {
perform_handshake(sd, username, server_ip, event_tx, false);
/*if let Some(data) = construct_message(
messages_structure::ROOTREQUEST,
Vec::new(),
generate_id(),
sd.cryptopair_ref(),
) {
if let Some(peerinfo) = sd.handshake_ref() {
sd.senders_ref()
.send_via(0, data, peerinfo.ip.to_string(), false);
}
}*/
} else {
// envoyer un datum request
} }
} }
@@ -68,10 +148,7 @@ mod tests {
use super::*; use super::*;
/// /*#[test]
/// creates a cryptographic signature
///
#[test]
fn creating_cryptographic_signature() { fn creating_cryptographic_signature() {
let mut hh = HandshakeHistory::new(); let mut hh = HandshakeHistory::new();
hh.add_new_handshake( hh.add_new_handshake(
@@ -79,5 +156,5 @@ mod tests {
"putain".to_string(), "putain".to_string(),
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 1), SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 1),
); );
} }*/
} }

View File

@@ -1,10 +1,14 @@
use bytes::Bytes; use bytes::Bytes;
use getrandom::Error; use getrandom::Error;
use crate::NetworkEvent;
use crate::P2PSharedData;
use crate::cryptographic_signature::{CryptographicSignature, formatPubKey, sign_message}; use crate::cryptographic_signature::{CryptographicSignature, formatPubKey, sign_message};
use crate::message_handling::EventType; use crate::message_handling::EventType;
use crate::messages_channels::{Message, MultipleSenders}; use crate::messages_channels::{Message, MultipleSenders};
use crate::messages_structure::construct_message; use crate::messages_structure::construct_message;
use crate::server_communication::generate_id;
use crossbeam_channel::{Receiver, Sender};
use std::collections::HashMap; use std::collections::HashMap;
use std::net::SocketAddr; use std::net::SocketAddr;
use std::net::UdpSocket; use std::net::UdpSocket;
@@ -66,23 +70,67 @@ pub fn parse_addresses(input: &String) -> Vec<SocketAddr> {
/// ///
/// registers the IP addresses by sending a Hello request to the server. /// registers the IP addresses by sending a Hello request to the server.
/// ///
pub fn register_ip_addresses( pub async fn perform_handshake(
crypto_pair: &CryptographicSignature, sd: &P2PSharedData,
server_uri: String, username: String,
senders: &MultipleSenders, ip: String,
messages_list: &Mutex<HashMap<i32, EventType>>, event_tx: Sender<NetworkEvent>,
id: i32, is_server_handshake: bool,
) { ) {
println!("username: {}, ip: {}", username.clone(), ip.clone());
let crypto_pair = sd.cryptopair_ref();
let senders = sd.senders_ref();
let messages_list = sd.messages_list_ref();
let id = generate_id();
let server_addr_query = get_socket_address(username.clone(), ip.clone());
match server_addr_query.await {
Ok(sockaddr_bytes) => {
match String::from_utf8(sockaddr_bytes.to_vec()) {
Ok(s) => {
let addresses = parse_addresses(&s);
if let Some(first) = addresses.first() {
sd.set_servername(username);
// first: &SocketAddr
let mut payload = Vec::new(); let mut payload = Vec::new();
payload.extend_from_slice(&0u32.to_be_bytes()); payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes()); payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let hello_handshake = construct_message(1, payload, id, crypto_pair); let hello_handshake = construct_message(1, payload, id, crypto_pair);
match hello_handshake { match hello_handshake {
Some(handshake_message) => { Some(handshake_message) => {
senders.send_via(0, handshake_message, server_uri, false); senders.send_via(
0,
handshake_message,
first.to_string(),
is_server_handshake,
messages_list,
);
} }
None => {} None => {}
} }
//let res = event_tx
// .send(NetworkEvent::());
} else {
//let res = event_tx.send(NetworkEvent::Error());
let err_msg =
format!("no valid socket addresses found in: {}", s).to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
Err(e) => {
//let res = event_tx.send(NetworkEvent::Error());
let err_msg =
format!("invalid UTF-8 in socket address bytes: {}", e).to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
}
Err(e) => {
let err_msg = format!("failed to retreive socket address: {}", e).to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
/*let mut list = messages_list.lock().expect("Failed to lock messages_list"); /*let mut list = messages_list.lock().expect("Failed to lock messages_list");
match list.get(&id) { match list.get(&id) {
Some(_) => { Some(_) => {

41
todo.md
View File

@@ -1,32 +1,13 @@
# Todo # Todo :
## peer discovery ## peer discovery
## handshake ## handshake
# Todo
## peer discovery
- get rsquest to the uri /peers/
## registration with the server
- generation of the cryptographic key OK
- put request to the uri (check if the peer is already connected) OK
- udp handshakes OK
- get request to the uri /peers/key to get the public key of a peer OK
- get request to the uri /peers/key/addresses OK
## handshake
- handshake structure OK
- 5min timeout after handshake - 5min timeout after handshake
- matain connection every 4 min - matain connection every 4 min
## data transfer ## data transfer
- request structure - request structure
- root/root reply structure - root/root reply structure
- datum/nodatum and datum structures - datum/nodatum and datum structures
@@ -34,16 +15,7 @@
- setting in gui to act as a relay - setting in gui to act as a relay
- chunk, directory, big, bigdirectory structures - chunk, directory, big, bigdirectory structures
## fonctionnalités application ## fonctionnalités application :
## nat traversal
- make hello and helloreply messages set the first extension bit to announce that peer is available for nat traversal
- implement actual nat traversal requests
- implement nat traversal :
- if hello/helloreply doesnt work with a peer, find a peer that supports nat traversal (server in priority) then begin protocol
fonctionnalités :
rechercher les fichiers d'un pair rechercher les fichiers d'un pair
telechargement des fichiers telechargement des fichiers
@@ -53,11 +25,13 @@ choisir le nombre de canaux
handshake server DOING handshake server DOING
se deconnecter du réseau DOING se deconnecter du réseau DOING
## autre
## autre :
socket ipv6 socket ipv6
# FAIT
# FAIT :
- choisir un pseudo OK - choisir un pseudo OK
- get rsquest to the uri /peers/ OK - get rsquest to the uri /peers/ OK
@@ -71,3 +45,4 @@ socket ipv6
- generer une clé publique OK - generer une clé publique OK
- verifier signature OK - verifier signature OK
- 2 channels -> un pour envoyer et un pour recevoir OK - 2 channels -> un pour envoyer et un pour recevoir OK