4 Commits

Author SHA1 Message Date
Tiago Batista Cardoso
341f8f123d update 2026-01-15 22:37:24 +01:00
Tiago Batista Cardoso
c59ce1be55 peer address in nat traversal 2026-01-15 22:08:11 +01:00
Tiago Batista Cardoso
f735ab34fc implementation 2026-01-15 22:01:48 +01:00
Tiago Batista Cardoso
b54e044ab1 thing 2026-01-11 22:31:31 +01:00
10 changed files with 201 additions and 616 deletions

View File

@@ -1,5 +1,5 @@
use client_network::{ use client_network::{
ChunkNode, MerkleNode, MerkleTree, NetworkCommand, NetworkEvent, NodeHash, filename_to_string, MerkleNode, MerkleTree, NetworkCommand, NetworkEvent, NodeHash, filename_to_string,
node_hash_to_hex_string, node_hash_to_hex_string,
}; };
use crossbeam_channel::{Receiver, Sender}; use crossbeam_channel::{Receiver, Sender};
@@ -49,11 +49,11 @@ pub struct P2PClientApp {
impl P2PClientApp { impl P2PClientApp {
pub fn new(cmd_tx: Sender<NetworkCommand>, event_rx: Receiver<NetworkEvent>) -> Self { pub fn new(cmd_tx: Sender<NetworkCommand>, event_rx: Receiver<NetworkEvent>) -> Self {
//let (root_hash, tree_content) = MerkleNode::generate_base_tree(); let (root_hash, tree_content) = MerkleNode::generate_base_tree();
let mut loaded_fs = HashMap::new(); let mut loaded_fs = HashMap::new();
//let tree = MerkleTree::new(tree_content, root_hash); let tree = MerkleTree::new(tree_content, root_hash);
//loaded_fs.insert("bob".to_string(), tree); loaded_fs.insert("bob".to_string(), tree);
Self { Self {
remaining: std::time::Duration::from_secs(0), remaining: std::time::Duration::from_secs(0),
@@ -123,41 +123,23 @@ impl eframe::App for P2PClientApp {
NetworkEvent::FileTreeReceived(_peer_id, _) => { NetworkEvent::FileTreeReceived(_peer_id, _) => {
todo!(); todo!();
//self.loaded_tree_nodes.insert(_peer_id, tree); // self.loaded_tree_nodes.insert(_peer_id, tree);
//self.status_message = "🔄 File tree updated successfully.".to_string(); self.status_message = "🔄 File tree updated successfully.".to_string();
} }
NetworkEvent::FileTreeRootReceived(peer_id, root_hash) => { NetworkEvent::FileTreeRootReceived(peer_id, root_hash) => {
// todo!(); todo!();
/*self.status_message = format!( // self.status_message = format!("🔄 Received Merkle Root from {}: {}", peer_id, &root_hash[..8]);
"🔄 Received Merkle Root from {}: {}", //
peer_id, //
&root_hash[..8] // self.active_peer_id = Some(peer_id.clone());
);*/ //
//
if let Ok(chunknode) = ChunkNode::new(Vec::new()) { // // Request the content of the root directory immediately
let mut data_map: HashMap<NodeHash, MerkleNode> = HashMap::new(); // let _ = self.network_cmd_tx.send(NetworkCommand::RequestDirectoryContent(
data_map.insert(root_hash, MerkleNode::Chunk(chunknode)); // peer_id,
let tree = MerkleTree { // root_hash,
data: data_map, // ));
root: root_hash,
};
match &self.active_peer {
Some(activepeer) => {
self.loaded_fs.insert(activepeer.clone(), tree);
}
None => {}
}
println!("tree created");
}
//self.active_peer_id = Some(peer_id.clone());
// Request the content of the root directory immediately
/*let _ = self
.network_cmd_tx
.send(NetworkCommand::RequestDirectoryContent(peer_id, root_hash));*/
} }
NetworkEvent::Connected(ip) => { NetworkEvent::Connected(ip) => {
self.server_status = ServerStatus::Connected; self.server_status = ServerStatus::Connected;
@@ -378,12 +360,9 @@ impl eframe::App for P2PClientApp {
.loaded_fs .loaded_fs
.contains_key(self.active_peer.as_ref().unwrap()) .contains_key(self.active_peer.as_ref().unwrap())
{ {
//todo!(); let _ = self
let _ = self.network_cmd_tx.send(NetworkCommand::Discover( .network_cmd_tx
peer.0.clone(), .send(NetworkCommand::ConnectPeer(peer.clone()));
"root".to_string(),
self.connected_address.clone(),
));
} }
} }
selectable.context_menu(|ui| { selectable.context_menu(|ui| {
@@ -546,13 +525,7 @@ impl P2PClientApp {
entry.content_hash, entry.content_hash,
tree, tree,
depth + 1, depth + 1,
Some( Some(entry.filename),
entry
.filename
.as_slice()
.try_into()
.expect("incorrect size"),
),
); );
} }
}); });
@@ -573,7 +546,7 @@ impl P2PClientApp {
.enabled(true) .enabled(true)
.show(ui, |ui| { .show(ui, |ui| {
for child in &node.children_hashes { for child in &node.children_hashes {
self.draw_file_node(ui, child.content_hash, tree, depth + 1, None); self.draw_file_node(ui, child.clone(), tree, depth + 1, None);
} }
}); });
} }

View File

@@ -7,7 +7,6 @@ use p256::ecdsa::{
signature::{Signer, Verifier}, signature::{Signer, Verifier},
}; };
use rand_core::OsRng; use rand_core::OsRng;
use reqwest::Error;
use sha2::{Digest, Sha256}; use sha2::{Digest, Sha256};
/// ///
@@ -51,24 +50,19 @@ pub async fn get_peer_key(username: &String) -> Result<VerifyingKey, reqwest::Er
let client = reqwest::Client::new(); let client = reqwest::Client::new();
let uri = format!("https://jch.irif.fr:8443/peers/{}/key", username); let uri = format!("https://jch.irif.fr:8443/peers/{}/key", username);
let res = client.get(uri).send().await?; let res = client.get(uri).send().await?;
if res.status().is_success() {
match res.error_for_status_ref() { println!("Successfully retreived the peers key.");
Ok(_) => { } else {
println!("Successfully retreived the peers key."); eprintln!(
let body: Bytes = res.bytes().await?; "Failed to get the peers key from the server. Status: {}",
let slice: &[u8] = body.as_ref(); res.status()
let body_bytes: &[u8; 64] = slice.try_into().expect("size error"); );
let received_key = convert_verifyingkey(body_bytes);
Ok(received_key)
}
Err(e) => {
eprintln!(
"Failed to get the peers key from the server. Status: {}",
res.status()
);
Err(e)
}
} }
let body: Bytes = res.bytes().await?;
let slice: &[u8] = body.as_ref();
let body_bytes: &[u8; 64] = slice.try_into().expect("size error");
let received_key = convert_verifyingkey(body_bytes);
Ok(received_key)
} }
fn convert_verifyingkey(raw_xy: &[u8; 64]) -> VerifyingKey { fn convert_verifyingkey(raw_xy: &[u8; 64]) -> VerifyingKey {

View File

@@ -80,7 +80,7 @@ impl MerkleTree {
} }
} }
/*fn generate_random_file_node( fn generate_random_file_node(
storage: &mut HashMap<NodeHash, MerkleNode>, storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> { ) -> Result<NodeHash, String> {
let mut rng = rng(); let mut rng = rng();
@@ -110,9 +110,9 @@ impl MerkleTree {
storage.insert(hash, node); storage.insert(hash, node);
Ok(hash) Ok(hash)
} }
}*/ }
/*fn generate_random_directory_node( fn generate_random_directory_node(
depth: u32, depth: u32,
max_depth: u32, max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>, storage: &mut HashMap<NodeHash, MerkleNode>,
@@ -172,7 +172,7 @@ impl MerkleTree {
storage.insert(hash, node); storage.insert(hash, node);
Ok(hash) Ok(hash)
} }
}*/ }
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct ChunkNode { pub struct ChunkNode {
@@ -208,7 +208,7 @@ impl ChunkNode {
// Helper struct // Helper struct
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct DirectoryEntry { pub struct DirectoryEntry {
pub filename: Vec<u8>, pub filename: [u8; FILENAME_HASH_SIZE],
pub content_hash: NodeHash, pub content_hash: NodeHash,
} }
@@ -240,7 +240,7 @@ pub struct BigNode {
} }
impl BigNode { impl BigNode {
/*pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> { pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len(); let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN { if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!( return Err(format!(
@@ -249,17 +249,16 @@ impl BigNode {
)); ));
} }
Ok(BigNode { children_hashes }) Ok(BigNode { children_hashes })
}*/ }
} }
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct BigDirectoryNode { pub struct BigDirectoryNode {
//pub children_hashes: Vec<NodeHash>, pub children_hashes: Vec<NodeHash>,
pub children_hashes: Vec<DirectoryEntry>,
} }
impl BigDirectoryNode { impl BigDirectoryNode {
/*pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> { pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len(); let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN { if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!( return Err(format!(
@@ -268,14 +267,6 @@ impl BigDirectoryNode {
)); ));
} }
Ok(BigDirectoryNode { children_hashes }) Ok(BigDirectoryNode { children_hashes })
}*/
pub fn new(entries: Vec<DirectoryEntry>) -> Result<Self, String> {
if entries.len() > MAX_DIRECTORY_ENTRIES {
return Err(format!("Directory exceeds {} bytes", entries.len()));
}
Ok(BigDirectoryNode {
children_hashes: entries,
})
} }
} }
@@ -310,14 +301,14 @@ impl MerkleNode {
} }
MerkleNode::BigDirectory(node) => { MerkleNode::BigDirectory(node) => {
for hash in &node.children_hashes { for hash in &node.children_hashes {
bytes.extend_from_slice(&hash.content_hash); bytes.extend_from_slice(hash);
} }
} }
} }
bytes bytes
} }
/*pub fn generate_random_tree( pub fn generate_random_tree(
max_depth: u32, max_depth: u32,
) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> { ) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new(); let mut storage = HashMap::new();
@@ -326,9 +317,9 @@ impl MerkleNode {
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?; let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage)) Ok((root_hash, storage))
}*/ }
/*pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) { pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
let mut res = HashMap::new(); let mut res = HashMap::new();
let node1 = MerkleNode::Chunk(ChunkNode::new_random()); let node1 = MerkleNode::Chunk(ChunkNode::new_random());
@@ -378,5 +369,5 @@ impl MerkleNode {
res.insert(root_hash, root); res.insert(root_hash, root);
(root_hash, res) (root_hash, res)
}*/ }
} }

View File

@@ -1,96 +1 @@
use crate::{BigDirectoryNode, DirectoryEntry, DirectoryNode, MerkleNode, MerkleTree, NodeHash}; fn parse_received_datum(recevied_datum: Vec<u8>) {}
use sha2::{Digest, Sha256};
const CHUNK: u8 = 0;
const DIRECTORY: u8 = 1;
const BIG: u8 = 2;
const BIGDIRECTORY: u8 = 3;
fn parse_received_datum(recevied_datum: Vec<u8>, datum_length: usize, mut tree: MerkleTree) {
if datum_length > recevied_datum.len() {
return;
}
if datum_length < 32 + 64 {
return;
}
let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error");
let sigstart = datum_length - 64;
let value = &recevied_datum[32..sigstart];
let value_slice = value.to_vec();
let signature: [u8; 32] = recevied_datum[sigstart..datum_length]
.try_into()
.expect("Taille incorrecte");
let datum_type = value_slice[0];
match datum_type {
CHUNK => {
tree.data.insert(
hash_name,
MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
);
}
DIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.to_vec(),
content_hash: hash,
});
}
let current = DirectoryNode::new(dir_entries);
match current {
Ok(current_node) => {
tree.data
.insert(hash_name, MerkleNode::Directory(current_node));
}
Err(e) => {
println!("{}", e);
}
}
}
BIG => {
let chlidren: Vec<NodeHash> = Vec::new();
tree.data.insert(
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: chlidren,
}),
);
}
BIGDIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.to_vec(),
content_hash: hash,
});
}
let current = BigDirectoryNode::new(dir_entries);
match current {
Ok(current_node) => {
tree.data
.insert(hash_name, MerkleNode::BigDirectory(current_node));
}
Err(e) => {
println!("{}", e);
}
}
}
_ => {}
}
}

View File

@@ -12,16 +12,13 @@ use crate::{
cryptographic_signature::CryptographicSignature, cryptographic_signature::CryptographicSignature,
message_handling::EventType, message_handling::EventType,
messages_channels::{MultipleSenders, start_receving_thread}, messages_channels::{MultipleSenders, start_receving_thread},
messages_structure::{ messages_structure::{NATTRAVERSALREQUEST, NATTRAVERSALREQUEST2, construct_message},
NATTRAVERSALREQUEST, NATTRAVERSALREQUEST2, ROOTREQUEST, construct_message, registration::{parse_addresses, register_ip_addresses, register_with_the_server},
},
peers_refresh::HandshakeHistory,
registration::{parse_addresses, perform_handshake, register_with_the_server},
server_communication::{generate_id, get_peer_list}, server_communication::{generate_id, get_peer_list},
}; };
use std::{ use std::{
io::Error, io::Error,
net::{IpAddr, Ipv4Addr, UdpSocket}, net::{Ipv4Addr, UdpSocket},
}; };
use std::{ use std::{
net::SocketAddr, net::SocketAddr,
@@ -34,7 +31,6 @@ pub struct P2PSharedData {
shared_messageslist: Arc<Mutex<HashMap<i32, EventType>>>, shared_messageslist: Arc<Mutex<HashMap<i32, EventType>>>,
shared_senders: Arc<MultipleSenders>, shared_senders: Arc<MultipleSenders>,
server_name: Arc<Mutex<String>>, server_name: Arc<Mutex<String>>,
handshake_peers: Arc<HandshakeHistory>,
} }
use bytes::Bytes; use bytes::Bytes;
@@ -56,14 +52,12 @@ impl P2PSharedData {
let senders = MultipleSenders::new(1, &shared_socket, cmd_tx); let senders = MultipleSenders::new(1, &shared_socket, cmd_tx);
let shared_senders = Arc::new(senders); let shared_senders = Arc::new(senders);
let server_name = Arc::new(Mutex::new("".to_string())); let server_name = Arc::new(Mutex::new("".to_string()));
let handhsake_peers = Arc::new(HandshakeHistory::new());
Ok(P2PSharedData { Ok(P2PSharedData {
shared_socket: shared_socket, shared_socket: shared_socket,
shared_cryptopair: shared_cryptopair, shared_cryptopair: shared_cryptopair,
shared_messageslist: shared_messageslist, shared_messageslist: shared_messageslist,
shared_senders: shared_senders, shared_senders: shared_senders,
server_name: server_name, server_name: server_name,
handshake_peers: handhsake_peers,
}) })
} }
pub fn socket(&self) -> Arc<UdpSocket> { pub fn socket(&self) -> Arc<UdpSocket> {
@@ -94,9 +88,6 @@ impl P2PSharedData {
pub fn cryptopair_ref(&self) -> &CryptographicSignature { pub fn cryptopair_ref(&self) -> &CryptographicSignature {
&*self.shared_cryptopair &*self.shared_cryptopair
} }
pub fn handshake_ref(&self) -> &HandshakeHistory {
&*self.handshake_peers
}
pub fn messages_list_ref(&self) -> &Mutex<HashMap<i32, EventType>> { pub fn messages_list_ref(&self) -> &Mutex<HashMap<i32, EventType>> {
&*self.shared_messageslist &*self.shared_messageslist
@@ -126,8 +117,6 @@ pub enum NetworkCommand {
RequestChunk(String, String), RequestChunk(String, String),
Disconnect(), Disconnect(),
ResetServerPeer(), ResetServerPeer(),
Discover(String, String, String),
GetChildren(String, String),
// ... // ...
} }
@@ -141,7 +130,7 @@ pub enum NetworkEvent {
PeerListUpdated(Vec<(String, bool)>), PeerListUpdated(Vec<(String, bool)>),
FileTreeReceived(String, Vec<MerkleNode>), // peer_id, content FileTreeReceived(String, Vec<MerkleNode>), // peer_id, content
DataReceived(String, MerkleNode), DataReceived(String, MerkleNode),
FileTreeRootReceived(String, NodeHash), FileTreeRootReceived(String, String),
HandshakeFailed(), HandshakeFailed(),
ServerHandshakeFailed(String), ServerHandshakeFailed(String),
// ... // ...
@@ -176,8 +165,6 @@ pub fn start_p2p_executor(
// Use tokio to spawn the asynchronous networking logic // Use tokio to spawn the asynchronous networking logic
tokio::task::spawn(async move { tokio::task::spawn(async move {
// P2P/Networking Setup goes here // P2P/Networking Setup goes here
let handshake_history = Arc::new(Mutex::new(HandshakeHistory::new()));
let handshake_clone = handshake_history.clone();
println!("Network executor started."); println!("Network executor started.");
@@ -187,13 +174,33 @@ pub fn start_p2p_executor(
if let Ok(cmd) = cmd_rx.try_recv() { if let Ok(cmd) = cmd_rx.try_recv() {
match cmd { match cmd {
NetworkCommand::ServerHandshake(username, ip) => { NetworkCommand::ServerHandshake(username, ip) => {
println!("server handshake called");
if let Some(sd) = shared_data.as_ref() { if let Some(sd) = shared_data.as_ref() {
start_receving_thread(sd, event_tx.clone(), &handshake_clone); println!("username:{}, ip:{}", username, ip);
let res = let server_addr_query = get_socket_address(username.clone(), ip);
perform_handshake(&sd, username, ip, event_tx.clone(), true).await;
} else { match server_addr_query.await {
println!("no shared data"); Some(server_address) => {
sd.set_servername(username);
// first: &SocketAddr
start_receving_thread(
sd,
server_address, // copie le SocketAddr (implémente Copy pour SocketAddr)
event_tx.clone(), //
);
register_ip_addresses(
sd.cryptopair_ref(),
server_address.to_string(),
sd.senders_ref(),
sd.messages_list_ref(),
generate_id(),
);
}
None => {
let err_msg =
format!("failed to retreive socket address").to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
} }
} }
NetworkCommand::ConnectPeer((username, connected)) => { NetworkCommand::ConnectPeer((username, connected)) => {
@@ -206,56 +213,6 @@ pub fn start_p2p_executor(
NetworkCommand::RequestFileTree(_) => { NetworkCommand::RequestFileTree(_) => {
println!("[Network] RequestFileTree() called"); println!("[Network] RequestFileTree() called");
} }
NetworkCommand::Discover(username, hash, ip) => {
// envoie un handshake au peer, puis un root request
if let Some(sd) = shared_data.as_ref() {
let res = {
let m = handshake_clone.lock().unwrap();
m.get_peer_info_username(username.clone()).cloned()
};
match res {
Some(peerinfo) => {
// envoyer un root request
let rootrequest = construct_message(
ROOTREQUEST,
Vec::new(),
generate_id(),
sd.cryptopair_ref(),
);
match rootrequest {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref().send_via(
0,
resp_msg,
peerinfo.ip.to_string(),
false,
sd.messages_list_ref(),
);
}
}
}
None => {
// envoyer un handshake
let res = perform_handshake(
&sd,
username,
ip,
event_tx.clone(),
false,
)
.await;
}
}
} else {
println!("no shared data");
}
}
NetworkCommand::GetChildren(username, hash) => {
// envoie un datum request au peer
}
NetworkCommand::RequestDirectoryContent(_, _) => { NetworkCommand::RequestDirectoryContent(_, _) => {
println!("[Network] RequestDirectoryContent() called"); println!("[Network] RequestDirectoryContent() called");
} }
@@ -366,13 +323,15 @@ pub fn start_p2p_executor(
match server_addr_query.await { match server_addr_query.await {
Some(server_addr) => match peer_addr_query.await { Some(server_addr) => match peer_addr_query.await {
Some(peer_addr) => { Some(peer_addr) => {
let payload = socket_addr_to_vec(server_addr); let payload =
parse_pack(peer_addr.clone().to_string().as_str())
.expect("couldnt create payload");
print!("{:?}", payload.clone()); print!("{:?}", payload.clone());
let natreq = construct_message( let natreq = construct_message(
NATTRAVERSALREQUEST, NATTRAVERSALREQUEST,
server_addr.to_string().into_bytes(), payload.clone().to_vec(),
generate_id(), generate_id(),
&sd.cryptopair(), &sd.cryptopair(),
); );
@@ -384,7 +343,6 @@ pub fn start_p2p_executor(
), ),
server_addr.to_string(), server_addr.to_string(),
false, false,
sd.messages_list_ref(),
); );
} }
None => { None => {
@@ -415,15 +373,6 @@ pub fn start_p2p_executor(
}) })
} }
fn socket_addr_to_vec(addr: SocketAddr) -> Vec<u8> {
let mut v = match addr.ip() {
IpAddr::V4(v4) => v4.octets().to_vec(),
IpAddr::V6(v6) => v6.octets().to_vec(),
};
v.extend(&addr.port().to_be_bytes());
v
}
fn parse_pack(s: &str) -> Option<[u8; 6]> { fn parse_pack(s: &str) -> Option<[u8; 6]> {
// split into "ip" and "port" // split into "ip" and "port"
let mut parts = s.rsplitn(2, ':'); let mut parts = s.rsplitn(2, ':');
@@ -461,31 +410,12 @@ pub async fn get_socket_address(username: String, ip: String) -> Option<SocketAd
match String::from_utf8(body.to_vec()) { match String::from_utf8(body.to_vec()) {
Ok(s) => { Ok(s) => {
let addresses = parse_addresses(&s); let addresses = parse_addresses(&s);
addresses.iter().copied().find(|a| a.is_ipv4()) if let Some(first) = addresses.first() {
Some(first.clone())
} else {
None
}
} }
Err(_) => None, Err(_) => None,
} }
} }
pub async fn get_possible_socket_address(username: String, ip: String) -> Vec<SocketAddr> {
let client = reqwest::Client::new();
let uri = format!("{}/peers/{}/addresses", ip, username);
let res = client.get(uri).send().await.expect("couldnt get response");
if res.status().is_success() {
println!("Successfully retreived the addresses.");
} else {
eprintln!(
"Failed to get the peers addresses from the server. Status: {}",
res.status()
);
}
let body: Bytes = res.bytes().await.expect("couldnt get bytes");
match String::from_utf8(body.to_vec()) {
Ok(s) => {
let addresses = parse_addresses(&s);
addresses.iter().copied().filter(|a| a.is_ipv4()).collect()
}
Err(_) => Vec::new(),
}
}

View File

@@ -1,13 +1,11 @@
use crate::{ use crate::{
NetworkEvent, NodeHash, NetworkEvent,
cryptographic_signature::{ cryptographic_signature::{
CryptographicSignature, get_peer_key, sign_message, verify_signature, CryptographicSignature, get_peer_key, sign_message, verify_signature,
}, },
messages_channels::MultipleSenders, messages_channels::MultipleSenders,
messages_structure::construct_message, messages_structure::construct_message,
peers_refresh::HandshakeHistory,
registration, registration,
server_communication::generate_id,
}; };
use std::{collections::HashMap, net::SocketAddr}; use std::{collections::HashMap, net::SocketAddr};
use std::{ use std::{
@@ -16,7 +14,9 @@ use std::{
}; };
pub enum EventType { pub enum EventType {
SendRootRequest, ServerHelloReply,
PeerHelloReply,
PeerHello,
} }
const ID: usize = 4; const ID: usize = 4;
@@ -42,12 +42,11 @@ pub fn handle_recevied_message(
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>, messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
recevied_message: &Vec<u8>, recevied_message: &Vec<u8>,
crypto_pair: &CryptographicSignature, crypto_pair: &CryptographicSignature,
//socket_addr: &SocketAddr, socket_addr: &SocketAddr,
senders: &MultipleSenders, senders: &MultipleSenders,
server_name: &String, server_name: &String,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr, ip: SocketAddr,
handhsake_history: &Arc<Mutex<HandshakeHistory>>,
) { ) {
if recevied_message.len() < 4 { if recevied_message.len() < 4 {
return; return;
@@ -77,8 +76,6 @@ pub fn handle_recevied_message(
crypto_pair, crypto_pair,
cmd_tx, cmd_tx,
ip, ip,
messages_list,
handhsake_history,
senders, senders,
); );
@@ -86,13 +83,7 @@ pub fn handle_recevied_message(
None => {} None => {}
Some(resp_msg) => { Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg); println!("msg_sent:{:?}", resp_msg);
senders.send_via( senders.send_via(0, resp_msg, ip.to_string(), is_resp_to_server_handshake);
0,
resp_msg,
ip.to_string(),
is_resp_to_server_handshake,
messages_list,
);
} }
} }
@@ -168,11 +159,8 @@ pub fn parse_message(
crypto_pair: &CryptographicSignature, crypto_pair: &CryptographicSignature,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr, ip: SocketAddr,
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
handhsake_history_mutex: &Arc<Mutex<HandshakeHistory>>,
senders: &MultipleSenders, senders: &MultipleSenders,
) -> Option<Vec<u8>> { ) -> Option<Vec<u8>> {
let mut handhsake_history = handhsake_history_mutex.lock().unwrap();
let cmd_tx_clone = cmd_tx.clone(); let cmd_tx_clone = cmd_tx.clone();
let id_bytes: [u8; 4] = received_message[0..ID] let id_bytes: [u8; 4] = received_message[0..ID]
@@ -186,29 +174,20 @@ pub fn parse_message(
.expect("Taille incorrecte"); .expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes) as usize; let msg_length = u16::from_be_bytes(length_bytes) as usize;
// verify signature // verify signature
match msgtype { match msgtype {
HELLO | HELLOREPLY | NODATUM | NATTRAVERSALREQUEST | NATTRAVERSALREQUEST2 => { HELLO | HELLOREPLY | ROOTREPLY | NODATUM | NATTRAVERSALREQUEST | NATTRAVERSALREQUEST2 => {
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength); println!("name received length: {}", ilength);
let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize]; let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let received_username = String::from_utf8(received_name.to_vec()); let received_username = String::from_utf8(received_name.to_vec());
match received_username { match received_username {
Ok(username) => { Ok(username) => {
let peer_pubkey = let peer_pubkey = tokio::runtime::Runtime::new()
match handhsake_history.get_peer_info_username(username.clone()) { .unwrap()
Some(peerinfo) => peerinfo.pubkey, .block_on(get_peer_key(&username))
_ => tokio::runtime::Runtime::new() .expect("failed to retrieve public key");
.unwrap()
.block_on(get_peer_key(&username))
.expect("failed to retrieve public key"),
};
match msgtype {
HELLOREPLY => {
handhsake_history.add_new_handshake(peer_pubkey, "".to_string(), ip);
}
_ => {}
}
let signature: [u8; SIGNATURE] = received_message let signature: [u8; SIGNATURE] = received_message
[LENGTH + msg_length..LENGTH + msg_length + SIGNATURE] [LENGTH + msg_length..LENGTH + msg_length + SIGNATURE]
.try_into() .try_into()
@@ -227,22 +206,6 @@ pub fn parse_message(
} }
} }
} }
ROOTREPLY => {
let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength);
if let Some(peerinfo) = handhsake_history.get_peer_info_ip(ip.to_string()) {
if !verify_signature(peerinfo.pubkey, &received_message) {
println!(
"incorrect signature from given peer: {}, ignoring message of type {} with id {}",
&peerinfo.username, received_message[ID], id
);
return None;
} else {
println!("signature verified");
}
}
}
_ => {} _ => {}
} }
@@ -281,7 +244,6 @@ pub fn parse_message(
natreq2.expect("couldnt construct message nattraversalrequest2"), natreq2.expect("couldnt construct message nattraversalrequest2"),
address, address,
false, false,
&messages_list,
); );
} }
@@ -290,7 +252,8 @@ pub fn parse_message(
constructed_message = construct_message(OK, Vec::new(), id, crypto_pair); constructed_message = construct_message(OK, Vec::new(), id, crypto_pair);
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
let received_address = &received_message[LENGTH..LENGTH + ilength as usize]; let received_address =
&received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let address = String::from_utf8(received_address.to_vec()).expect("wrong name"); let address = String::from_utf8(received_address.to_vec()).expect("wrong name");
let pingreq = construct_message(PING, Vec::new(), id, crypto_pair); let pingreq = construct_message(PING, Vec::new(), id, crypto_pair);
@@ -300,7 +263,6 @@ pub fn parse_message(
pingreq.expect("couldnt construct message ping request"), pingreq.expect("couldnt construct message ping request"),
address, address,
false, false,
&messages_list,
); );
} }
// //
@@ -336,40 +298,7 @@ pub fn parse_message(
// //
// //
// ajoute a la liste des peers handshake // ajoute a la liste des peers handshake
HELLOREPLY => { HELLOREPLY => {}
// ajoute l'username a la liste des peers handshake
let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH]
.try_into()
.expect("incorrect size"),
);
let received_username =
&received_message[LENGTH + EXTENSIONS..LENGTH + received_length as usize];
handhsake_history.update_peer_info(
ip.to_string(),
String::from_utf8(received_username.to_vec()).expect("invalid conversion"),
);
// verifie s'il faut renvoyer un root request
let guard = messages_list.lock().expect("Échec du verrouillage");
let res = guard.get(&id);
match res {
Some(ev) => {
match ev {
EventType::SendRootRequest => {
// envoyer la root request
let rootrequest = construct_message(
ROOTREQUEST,
Vec::new(),
generate_id(),
crypto_pair,
);
return rootrequest;
}
}
}
None => {}
}
}
// //
// ROOTREQUEST // ROOTREQUEST
// //
@@ -377,26 +306,7 @@ pub fn parse_message(
// //
// ROOTREPLY // ROOTREPLY
// //
ROOTREPLY => { // envoie un datum request
// recuperer le pseudo du peers ayant repondu
let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string());
match peers_exist {
Some(peerinfo) => {
// envoyer le hash a la gui
let received_hash: NodeHash = received_message[LENGTH..(32 + LENGTH)]
.try_into()
.expect("incorrect size");
let res = cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived(
peerinfo.username.clone(),
received_hash,
));
println!("file tree sent")
}
None => {
eprintln!("no peers found");
}
}
}
// //
// DATUMREQUEST // DATUMREQUEST
// //
@@ -468,6 +378,6 @@ pub fn parse_message(
// //
// envoie OK à S puis envoie un ping à S // envoie OK à S puis envoie un ping à S
_ => return None, _ => return None,
}; }
constructed_message constructed_message
} }

View File

@@ -2,7 +2,6 @@ use crate::P2PSharedData;
use crate::cryptographic_signature::CryptographicSignature; use crate::cryptographic_signature::CryptographicSignature;
use crate::message_handling::EventType; use crate::message_handling::EventType;
use crate::message_handling::handle_recevied_message; use crate::message_handling::handle_recevied_message;
use crate::peers_refresh::HandshakeHistory;
use std::collections::HashMap; use std::collections::HashMap;
use std::net::SocketAddr; use std::net::SocketAddr;
use std::net::UdpSocket; use std::net::UdpSocket;
@@ -22,9 +21,9 @@ pub struct MultipleSenders {
} }
pub struct Message { pub struct Message {
pub payload: Vec<u8>, payload: Vec<u8>,
pub address: String, address: String,
pub is_resp_to_server_handshake: bool, is_resp_to_server_handshake: bool,
} }
struct RetryMessage { struct RetryMessage {
@@ -206,74 +205,64 @@ impl MultipleSenders {
data: Vec<u8>, data: Vec<u8>,
remote_addr: String, remote_addr: String,
is_resp_to_server_handshake: bool, is_resp_to_server_handshake: bool,
messages_list: &Mutex<HashMap<i32, EventType>>,
) { ) {
println!( println!(
"is_resp_to_server_handshake {}", "is_resp_to_server_handshake {}",
is_resp_to_server_handshake is_resp_to_server_handshake
); );
let msg_to_send = Message {
payload: data.clone(),
address: remote_addr,
is_resp_to_server_handshake,
};
if let Some(sender) = self.senders.get(channel_idx) { if let Some(sender) = self.senders.get(channel_idx) {
let _ = sender.send(msg_to_send); let _ = sender.send(Message {
} payload: data,
if !is_resp_to_server_handshake { address: remote_addr,
let mut guard = messages_list.lock().unwrap(); is_resp_to_server_handshake,
let message_id: [u8; 4] = data[0..4].try_into().expect("size error"); });
let id = i32::from_be_bytes(message_id);
guard.insert(id, EventType::SendRootRequest);
} }
} }
/*pub fn start_receving_thread(
socket: &Arc<UdpSocket>,
messages_list: &Arc<HashMap<i32, EventType>>,
crypto_pair: &Arc<CryptographicSignature>,
socket_addr: SocketAddr,
senders: &Arc<MultipleSenders>,
) {
let sock_clone = Arc::clone(socket);
let cryptopair_clone = Arc::clone(crypto_pair);
let senders_clone = Arc::clone(senders);
let messages_clone = Arc::clone(messages_list);
thread::spawn(move || {
let mut buf = [0u8; 1024];
loop {
match sock_clone.recv_from(&mut buf) {
Ok((amt, src)) => {
handle_recevied_message(
&messages_clone,
&buf.to_vec(),
&cryptopair_clone,
&socket_addr,
&senders_clone,
);
println!("Reçu {} octets de {}: {:?}", amt, src, &buf[..amt]);
}
Err(e) => eprintln!("Erreur de réception: {}", e),
}
}
});
}*/
} }
/*pub fn start_receving_thread(
socket: &Arc<UdpSocket>,
messages_list: &Arc<HashMap<i32, EventType>>,
crypto_pair: &Arc<CryptographicSignature>,
socket_addr: SocketAddr,
senders: &Arc<MultipleSenders>,
) {
let sock_clone = Arc::clone(socket);
let cryptopair_clone = Arc::clone(crypto_pair);
let senders_clone = Arc::clone(senders);
let messages_clone = Arc::clone(messages_list);
thread::spawn(move || {
let mut buf = [0u8; 1024];
loop {
match sock_clone.recv_from(&mut buf) {
Ok((amt, src)) => {
handle_recevied_message(
&messages_clone,
&buf.to_vec(),
&cryptopair_clone,
&socket_addr,
&senders_clone,
);
println!("Reçu {} octets de {}: {:?}", amt, src, &buf[..amt]);
}
Err(e) => eprintln!("Erreur de réception: {}", e),
}
}
});
}*/
pub fn start_receving_thread( pub fn start_receving_thread(
shared_data: &P2PSharedData, shared_data: &P2PSharedData,
socket_addr: SocketAddr,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
handshake_history: &Arc<Mutex<HandshakeHistory>>,
) { ) {
let sock_clone = shared_data.socket(); let sock_clone = shared_data.socket();
let cryptopair_clone = shared_data.cryptopair(); let cryptopair_clone = shared_data.cryptopair();
let senders_clone = shared_data.senders(); let senders_clone = shared_data.senders();
let messages_clone = shared_data.messages_list(); let messages_clone = shared_data.messages_list();
let servername_clone = shared_data.servername(); let servername_clone = shared_data.servername();
let handshake_clone = handshake_history.clone();
thread::spawn(move || { thread::spawn(move || {
let mut buf = [0u8; 1024]; let mut buf = [0u8; 1024];
loop { loop {
@@ -286,11 +275,11 @@ pub fn start_receving_thread(
&messages_clone, &messages_clone,
&received_data, &received_data,
&cryptopair_clone, &cryptopair_clone,
&socket_addr,
&senders_clone, &senders_clone,
&servername_clone, &servername_clone,
cmd_tx.clone(), cmd_tx.clone(),
src, src,
&handshake_clone,
); );
} }
Err(e) => eprintln!("Erreur de réception: {}", e), Err(e) => eprintln!("Erreur de réception: {}", e),

View File

@@ -43,22 +43,20 @@ pub fn construct_message(
let signature = sign_message(crypto_pair, &message); let signature = sign_message(crypto_pair, &message);
return Some(signature); return Some(signature);
} }
PING | OK | ROOTREQUEST => { PING | OK => {
message.extend_from_slice(&0u16.to_be_bytes()); message.extend_from_slice(&0u16.to_be_bytes());
return Some(message); return Some(message);
} }
ERROR | DATUMREQUEST => { ERROR | ROOTREQUEST | DATUMREQUEST => {
message.extend_from_slice(&payload.len().to_be_bytes()); message.extend_from_slice(&payload.len().to_be_bytes());
message.extend_from_slice(&payload); message.extend_from_slice(&payload);
return Some(message); return Some(message);
} }
ROOTREPLY | NODATUM | DATUM | NATTRAVERSALREQUEST => { ROOTREPLY | NODATUM | DATUM | NATTRAVERSALREQUEST => {
println!("payload:{:?}", &payload); message.extend_from_slice(&payload.len().to_be_bytes());
message.extend_from_slice(&(payload.len() as u16).to_be_bytes());
message.extend_from_slice(&payload); message.extend_from_slice(&payload);
println!("payload:{:?}", &message); //let signature = sign_message(crypto_pair, &message);
let signature = sign_message(crypto_pair, &message); //message.extend_from_slice(&signature);
message.extend_from_slice(&signature);
return Some(message); return Some(message);
} }

View File

@@ -3,7 +3,7 @@
use std::{ use std::{
collections::{HashMap, VecDeque}, collections::{HashMap, VecDeque},
net::{AddrParseError, Ipv4Addr, SocketAddr}, net::{AddrParseError, SocketAddr},
ops::Add, ops::Add,
process::Command, process::Command,
sync::{Arc, Mutex}, sync::{Arc, Mutex},
@@ -11,134 +11,54 @@ use std::{
time::{self, Duration, SystemTime}, time::{self, Duration, SystemTime},
}; };
use crate::NetworkEvent;
use crate::{
P2PSharedData, construct_message, generate_id, messages_structure,
registration::perform_handshake,
};
use crossbeam_channel::{Receiver, Sender};
use p256::ecdsa::VerifyingKey;
#[derive(Debug, Clone)]
pub struct PeerInfo { pub struct PeerInfo {
pub username: String, username: String,
pub pubkey: VerifyingKey, ip: SocketAddr,
pub ip: SocketAddr,
} }
pub struct HandshakeHistory { pub struct HandshakeHistory {
//time_k_ip_v: HashMap<u64, u64>, time_k_ip_v: HashMap<u64, u64>,
username_k_peerinfo_v: HashMap<String, PeerInfo>, ip_k_peerinfo_v: HashMap<u64, PeerInfo>,
ip_k_peerinfo_v: HashMap<String, PeerInfo>,
} }
impl HandshakeHistory { impl HandshakeHistory {
pub fn new() -> HandshakeHistory { pub fn new() -> HandshakeHistory {
HandshakeHistory { HandshakeHistory {
//time_k_ip_v: HashMap::new(), time_k_ip_v: HashMap::new(),
//ip_k_peerinfo_v: HashMap::new(),
username_k_peerinfo_v: HashMap::new(),
ip_k_peerinfo_v: HashMap::new(), ip_k_peerinfo_v: HashMap::new(),
} }
} }
/*pub fn update_handshake(&self) { pub fn update_handshake(&mut self) {
let hashmap_shared = Arc::new(self.username_k_peerinfo_v);
thread::spawn(move || { thread::spawn(move || {
let selfhashmap = hashmap_shared.clone(); let mut times_to_check = VecDeque::new();
let current_time: u64 = SystemTime::now()
.duration_since(time::UNIX_EPOCH)
.expect("system time before UNIX EPOCH")
.add(Duration::from_secs(10))
.as_secs();
// adds 10 seconds in the queue every 10 seconds
loop { loop {
for peer in selfhashmap.keys() { let mut child = Command::new("sleep").arg("9").spawn().unwrap();
let peer_ip = selfhashmap.get(peer);
// send ping
}
let mut child = Command::new("sleep").arg("10").spawn().unwrap();
let _result = child.wait().unwrap(); let _result = child.wait().unwrap();
} for n in 0..9 {
}); // push 9 successive seconds
}*/ times_to_check.push_back(current_time + n);
// gestion d'erreur si verrou mort
pub fn get_peer_info_username(&self, username: String) -> Option<&PeerInfo> {
self.username_k_peerinfo_v.get(&username).clone()
}
pub fn get_peer_info_ip(&self, ip: String) -> Option<&PeerInfo> {
self.ip_k_peerinfo_v.get(&ip).clone()
}
pub fn update_handshake(&self) {
// clone the map so we own it (cheap if PeerInfo is Clone)
let map_clone: Arc<HashMap<String, PeerInfo>> =
Arc::new(self.username_k_peerinfo_v.clone());
//let map_ip_clone: Arc<HashMap<String, PeerInfo>> = Arc::new(self.ip_k_peerinfo_v.clone());
let map_for_thread = Arc::clone(&map_clone);
thread::spawn(move || {
loop {
// Arc<HashMap<..>> derefs to &HashMap so these reads work
for (peer, peerinfo) in map_for_thread.iter() {
// send ping to peerinfo
} }
thread::sleep(Duration::from_secs(10));
} }
}); });
} }
pub fn update_peer_info(&mut self, ip: String, username: String) { pub fn add_new_handshake(&mut self, hash: u64, username: String, ip: SocketAddr) {
let peerinfo = self.get_peer_info_ip(ip.clone()); let current_time: u64 = SystemTime::now()
match peerinfo { .duration_since(time::UNIX_EPOCH)
Some(peer_info) => match ip.parse::<SocketAddr>() { .expect("system time before UNIX EPOCH")
Ok(addr) => { .as_secs();
let new_peer_info = PeerInfo { println!("time:{}", current_time);
username: username.clone(), /*self.time_k_hash_v.insert(current_time, hash);
pubkey: peer_info.pubkey, self.hash_k_peerinfo_v
ip: addr, .insert(hash, PeerInfo { username, ip });*/
};
self.ip_k_peerinfo_v.insert(ip, new_peer_info.clone());
self.username_k_peerinfo_v.insert(username, new_peer_info);
}
Err(e) => eprintln!("parse error: {}", e),
},
None => {
eprintln!("no peer info found in hashmap")
}
}
}
pub fn add_new_handshake(&mut self, hash: VerifyingKey, username: String, ip: SocketAddr) {
let peerinfo = PeerInfo {
username: username.clone(),
pubkey: hash,
ip,
};
self.username_k_peerinfo_v
.insert(username, peerinfo.clone());
self.ip_k_peerinfo_v
.insert(ip.to_string(), peerinfo.clone());
}
}
pub fn perform_discover(
username: String,
hash: String,
sd: &P2PSharedData,
server_ip: String,
event_tx: Sender<NetworkEvent>,
) {
// first, sends handshake
if hash == "root" {
perform_handshake(sd, username, server_ip, event_tx, false);
/*if let Some(data) = construct_message(
messages_structure::ROOTREQUEST,
Vec::new(),
generate_id(),
sd.cryptopair_ref(),
) {
if let Some(peerinfo) = sd.handshake_ref() {
sd.senders_ref()
.send_via(0, data, peerinfo.ip.to_string(), false);
}
}*/
} else {
// envoyer un datum request
} }
} }
@@ -148,7 +68,10 @@ mod tests {
use super::*; use super::*;
/*#[test] ///
/// creates a cryptographic signature
///
#[test]
fn creating_cryptographic_signature() { fn creating_cryptographic_signature() {
let mut hh = HandshakeHistory::new(); let mut hh = HandshakeHistory::new();
hh.add_new_handshake( hh.add_new_handshake(
@@ -156,5 +79,5 @@ mod tests {
"putain".to_string(), "putain".to_string(),
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 1), SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 1),
); );
}*/ }
} }

View File

@@ -1,14 +1,9 @@
use bytes::Bytes; use bytes::Bytes;
use crate::NetworkEvent;
use crate::P2PSharedData;
use crate::cryptographic_signature::{CryptographicSignature, formatPubKey, sign_message}; use crate::cryptographic_signature::{CryptographicSignature, formatPubKey, sign_message};
use crate::get_socket_address;
use crate::message_handling::EventType; use crate::message_handling::EventType;
use crate::messages_channels::MultipleSenders; use crate::messages_channels::MultipleSenders;
use crate::messages_structure::construct_message; use crate::messages_structure::construct_message;
use crate::server_communication::generate_id;
use crossbeam_channel::{Receiver, Sender};
use std::collections::HashMap; use std::collections::HashMap;
use std::net::SocketAddr; use std::net::SocketAddr;
use std::net::UdpSocket; use std::net::UdpSocket;
@@ -50,46 +45,23 @@ pub fn parse_addresses(input: &String) -> Vec<SocketAddr> {
/// ///
/// registers the IP addresses by sending a Hello request to the server. /// registers the IP addresses by sending a Hello request to the server.
/// ///
pub async fn perform_handshake( pub fn register_ip_addresses(
sd: &P2PSharedData, crypto_pair: &CryptographicSignature,
username: String, server_uri: String,
ip: String, senders: &MultipleSenders,
event_tx: Sender<NetworkEvent>, messages_list: &Mutex<HashMap<i32, EventType>>,
is_server_handshake: bool, id: i32,
) { ) {
println!("username: {}, ip: {}", username.clone(), ip.clone()); let mut payload = Vec::new();
let crypto_pair = sd.cryptopair_ref(); payload.extend_from_slice(&0u32.to_be_bytes());
let senders = sd.senders_ref(); payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let messages_list = sd.messages_list_ref(); let hello_handshake = construct_message(1, payload, id, crypto_pair);
let id = generate_id(); match hello_handshake {
let server_addr_query = get_socket_address(username.clone(), ip.clone()); Some(handshake_message) => {
match server_addr_query.await { senders.send_via(0, handshake_message, server_uri, false);
Some(sockaddr_bytes) => {
sd.set_servername(username);
// first: &SocketAddr
let mut payload = Vec::new();
payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let hello_handshake = construct_message(1, payload, id, crypto_pair);
match hello_handshake {
Some(handshake_message) => {
senders.send_via(
0,
handshake_message,
sockaddr_bytes.to_string(),
is_server_handshake,
messages_list,
);
}
None => {}
}
}
None => {
let err_msg = format!("failed to retreive socket address:").to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
} }
None => {}
} }
/*let mut list = messages_list.lock().expect("Failed to lock messages_list"); /*let mut list = messages_list.lock().expect("Failed to lock messages_list");
match list.get(&id) { match list.get(&id) {
Some(_) => { Some(_) => {