1 Commits

Author SHA1 Message Date
Tiago Batista Cardoso
82cc134626 thing 2026-01-11 22:00:10 +01:00
12 changed files with 255 additions and 1183 deletions

BIN
README.md

Binary file not shown.

View File

@@ -1,5 +1,5 @@
use client_network::{
ChunkNode, MerkleNode, MerkleTree, NetworkCommand, NetworkEvent, NodeHash, filename_to_string,
MerkleNode, MerkleTree, NetworkCommand, NetworkEvent, NodeHash, filename_to_string,
node_hash_to_hex_string,
};
use crossbeam_channel::{Receiver, Sender};
@@ -49,11 +49,11 @@ pub struct P2PClientApp {
impl P2PClientApp {
pub fn new(cmd_tx: Sender<NetworkCommand>, event_rx: Receiver<NetworkEvent>) -> Self {
//let (root_hash, tree_content) = MerkleNode::generate_base_tree();
let (root_hash, tree_content) = MerkleNode::generate_base_tree();
let mut loaded_fs = HashMap::new();
//let tree = MerkleTree::new(tree_content, root_hash);
//loaded_fs.insert("bob".to_string(), tree);
let tree = MerkleTree::new(tree_content, root_hash);
loaded_fs.insert("bob".to_string(), tree);
Self {
remaining: std::time::Duration::from_secs(0),
@@ -123,41 +123,23 @@ impl eframe::App for P2PClientApp {
NetworkEvent::FileTreeReceived(_peer_id, _) => {
todo!();
//self.loaded_tree_nodes.insert(_peer_id, tree);
//self.status_message = "🔄 File tree updated successfully.".to_string();
// self.loaded_tree_nodes.insert(_peer_id, tree);
self.status_message = "🔄 File tree updated successfully.".to_string();
}
NetworkEvent::FileTreeRootReceived(peer_id, root_hash) => {
// todo!();
todo!();
/*self.status_message = format!(
"🔄 Received Merkle Root from {}: {}",
peer_id,
&root_hash[..8]
);*/
if let Ok(chunknode) = ChunkNode::new(Vec::new()) {
let mut data_map: HashMap<NodeHash, MerkleNode> = HashMap::new();
data_map.insert(root_hash, MerkleNode::Chunk(chunknode));
let tree = MerkleTree {
data: data_map,
root: root_hash,
};
match &self.active_peer {
Some(activepeer) => {
self.loaded_fs.insert(activepeer.clone(), tree);
}
None => {}
}
println!("tree created");
}
//self.active_peer_id = Some(peer_id.clone());
// Request the content of the root directory immediately
/*let _ = self
.network_cmd_tx
.send(NetworkCommand::RequestDirectoryContent(peer_id, root_hash));*/
// self.status_message = format!("🔄 Received Merkle Root from {}: {}", peer_id, &root_hash[..8]);
//
//
// self.active_peer_id = Some(peer_id.clone());
//
//
// // Request the content of the root directory immediately
// let _ = self.network_cmd_tx.send(NetworkCommand::RequestDirectoryContent(
// peer_id,
// root_hash,
// ));
}
NetworkEvent::Connected(ip) => {
self.server_status = ServerStatus::Connected;
@@ -319,7 +301,7 @@ impl eframe::App for P2PClientApp {
ui.label("No connection..");
}
ServerStatus::ConnectedHandshake => {
let str = format!("📡");
let str = format!("📡 {}", self.active_server);
ui.label(str);
}
}
@@ -361,29 +343,21 @@ impl eframe::App for P2PClientApp {
} else {
for peer in &self.known_peers {
let is_active =
self.active_peer.as_ref().map_or(false, |id| id == &peer.0); // if peer.id == self.active_peer_id
let selectable;
if &self.active_server == &peer.0 {
selectable =
ui.selectable_label(is_active, format!("{} 📡 🌀", peer.0))
} else {
selectable = ui.selectable_label(is_active, format!("{}", peer.0));
}
self.active_peer.as_ref().map_or(false, |id| id == peer); // if peer.id == self.active_peer_id
let selectable = ui.selectable_label(is_active, format!("{}", peer));
if selectable.clicked() {
// switch to displaying this peer's tree
self.active_peer = Some(peer.0.clone());
self.active_peer = Some(peer.clone());
// Request root content if not loaded
if !self
.loaded_fs
.contains_key(self.active_peer.as_ref().unwrap())
{
//todo!();
let _ = self.network_cmd_tx.send(NetworkCommand::Discover(
peer.0.clone(),
"root".to_string(),
self.connected_address.clone(),
));
todo!();
// let _ = self.network_cmd_tx.send(NetworkCommand::RequestDirectoryContent(
// peer.clone(),
// peer.clone(),
// ));
}
}
selectable.context_menu(|ui| {
@@ -394,10 +368,10 @@ impl eframe::App for P2PClientApp {
.button("Utiliser le peer en tant que serveur")
.clicked()
{
self.active_server = peer.0.to_string();
self.active_server = peer.to_string();
let res = self.network_cmd_tx.send(
NetworkCommand::ServerHandshake(
peer.0.to_string(),
peer.to_string(),
self.connected_address.clone(),
),
);
@@ -405,29 +379,10 @@ impl eframe::App for P2PClientApp {
}
_ => {}
}
if ui.button("Send Ping").clicked() {
let res = self
.network_cmd_tx
.send(NetworkCommand::Ping(peer.0.to_string()));
}
if ui.button("Send Nat Traversal Request").clicked() {
match self.network_cmd_tx.send(NetworkCommand::NatTraversal(
peer.0.to_string(),
self.connected_address.clone(),
)) {
Ok(_) => {
print!("[+] successfully sent nat traversal request")
}
Err(_) => {
print!("[-] failed to send nat traversal request")
}
}
}
if ui.button("Infos").clicked() {
// action 3
ui.close();
}
// ... autres boutons
});
}
@@ -546,13 +501,7 @@ impl P2PClientApp {
entry.content_hash,
tree,
depth + 1,
Some(
entry
.filename
.as_slice()
.try_into()
.expect("incorrect size"),
),
Some(entry.filename),
);
}
});
@@ -573,7 +522,7 @@ impl P2PClientApp {
.enabled(true)
.show(ui, |ui| {
for child in &node.children_hashes {
self.draw_file_node(ui, child.content_hash, tree, depth + 1, None);
self.draw_file_node(ui, child.clone(), tree, depth + 1, None);
}
});
}

View File

@@ -1,5 +1,6 @@
use std::io::Read;
use crate::messages_structure::HandshakeMessage;
use bytes::Bytes;
use p256::EncodedPoint;
use p256::ecdsa::{
@@ -7,7 +8,6 @@ use p256::ecdsa::{
signature::{Signer, Verifier},
};
use rand_core::OsRng;
use reqwest::Error;
use sha2::{Digest, Sha256};
///
@@ -51,24 +51,19 @@ pub async fn get_peer_key(username: &String) -> Result<VerifyingKey, reqwest::Er
let client = reqwest::Client::new();
let uri = format!("https://jch.irif.fr:8443/peers/{}/key", username);
let res = client.get(uri).send().await?;
match res.error_for_status_ref() {
Ok(_) => {
println!("Successfully retreived the peers key.");
let body: Bytes = res.bytes().await?;
let slice: &[u8] = body.as_ref();
let body_bytes: &[u8; 64] = slice.try_into().expect("size error");
let received_key = convert_verifyingkey(body_bytes);
Ok(received_key)
}
Err(e) => {
eprintln!(
"Failed to get the peers key from the server. Status: {}",
res.status()
);
Err(e)
}
if res.status().is_success() {
println!("Successfully retreived the peers key.");
} else {
eprintln!(
"Failed to get the peers key from the server. Status: {}",
res.status()
);
}
let body: Bytes = res.bytes().await?;
let slice: &[u8] = body.as_ref();
let body_bytes: &[u8; 64] = slice.try_into().expect("size error");
let received_key = convert_verifyingkey(body_bytes);
Ok(received_key)
}
fn convert_verifyingkey(raw_xy: &[u8; 64]) -> VerifyingKey {
@@ -114,10 +109,11 @@ pub fn sign_message(crypto_pair: &CryptographicSignature, message: &Vec<u8>) ->
let digest = Sha256::digest(&message[..7 + msg_length as usize]);
let signature = crypto_pair.priv_key.sign_prehash_recoverable(&digest);
let message_length = 7 + msg_length as usize + 64;
let message_length = 12 + msg_length as usize + 32;
let mut signed_message = Vec::with_capacity(message_length);
println!("{}", message_length);
signed_message.extend_from_slice(&message[..7 + msg_length as usize]);
signed_message.extend_from_slice(&message[..8 + msg_length as usize]);
signed_message.pop();
println!("signed_tmp:{:?}", signed_message);
match signature {
Ok(signature) => {
@@ -128,7 +124,7 @@ pub fn sign_message(crypto_pair: &CryptographicSignature, message: &Vec<u8>) ->
let s_bytes = s.to_bytes();
signed_message.extend_from_slice(&r_bytes[..32]);
signed_message.extend_from_slice(&s_bytes[..32]);
println!("signed:{:?}, len: {}", signed_message, signed_message.len());
println!("signed:{:?}", signed_message);
signed_message
}
Err(e) => {
@@ -152,7 +148,10 @@ mod tests {
println!("pubkey : {}", formatted_pubkey);
}
/*#[test]
///
/// signs a message
///
#[test]
fn signing_message() {
let username = String::from("gamixtreize");
let crypto_pair = CryptographicSignature::new(username.clone());
@@ -161,5 +160,5 @@ mod tests {
let signed_message = sign_message(&crypto_pair, &ser);
println!("unsigned_message: {:?}", ser);
println!("signed_message: {:?}", signed_message);
}*/
}
}

View File

@@ -80,7 +80,7 @@ impl MerkleTree {
}
}
/*fn generate_random_file_node(
fn generate_random_file_node(
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
@@ -110,9 +110,9 @@ impl MerkleTree {
storage.insert(hash, node);
Ok(hash)
}
}*/
}
/*fn generate_random_directory_node(
fn generate_random_directory_node(
depth: u32,
max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>,
@@ -172,7 +172,7 @@ impl MerkleTree {
storage.insert(hash, node);
Ok(hash)
}
}*/
}
#[derive(Debug, Clone)]
pub struct ChunkNode {
@@ -208,7 +208,7 @@ impl ChunkNode {
// Helper struct
#[derive(Debug, Clone)]
pub struct DirectoryEntry {
pub filename: Vec<u8>,
pub filename: [u8; FILENAME_HASH_SIZE],
pub content_hash: NodeHash,
}
@@ -240,7 +240,7 @@ pub struct BigNode {
}
impl BigNode {
/*pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!(
@@ -249,17 +249,16 @@ impl BigNode {
));
}
Ok(BigNode { children_hashes })
}*/
}
}
#[derive(Debug, Clone)]
pub struct BigDirectoryNode {
//pub children_hashes: Vec<NodeHash>,
pub children_hashes: Vec<DirectoryEntry>,
pub children_hashes: Vec<NodeHash>,
}
impl BigDirectoryNode {
/*pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!(
@@ -268,14 +267,6 @@ impl BigDirectoryNode {
));
}
Ok(BigDirectoryNode { children_hashes })
}*/
pub fn new(entries: Vec<DirectoryEntry>) -> Result<Self, String> {
if entries.len() > MAX_DIRECTORY_ENTRIES {
return Err(format!("Directory exceeds {} bytes", entries.len()));
}
Ok(BigDirectoryNode {
children_hashes: entries,
})
}
}
@@ -310,14 +301,14 @@ impl MerkleNode {
}
MerkleNode::BigDirectory(node) => {
for hash in &node.children_hashes {
bytes.extend_from_slice(&hash.content_hash);
bytes.extend_from_slice(hash);
}
}
}
bytes
}
/*pub fn generate_random_tree(
pub fn generate_random_tree(
max_depth: u32,
) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new();
@@ -326,9 +317,9 @@ impl MerkleNode {
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage))
}*/
}
/*pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
let mut res = HashMap::new();
let node1 = MerkleNode::Chunk(ChunkNode::new_random());
@@ -378,5 +369,5 @@ impl MerkleNode {
res.insert(root_hash, root);
(root_hash, res)
}*/
}
}

View File

@@ -1,96 +0,0 @@
use crate::{BigDirectoryNode, DirectoryEntry, DirectoryNode, MerkleNode, MerkleTree, NodeHash};
use sha2::{Digest, Sha256};
const CHUNK: u8 = 0;
const DIRECTORY: u8 = 1;
const BIG: u8 = 2;
const BIGDIRECTORY: u8 = 3;
fn parse_received_datum(recevied_datum: Vec<u8>, datum_length: usize, mut tree: MerkleTree) {
if datum_length > recevied_datum.len() {
return;
}
if datum_length < 32 + 64 {
return;
}
let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error");
let sigstart = datum_length - 64;
let value = &recevied_datum[32..sigstart];
let value_slice = value.to_vec();
let signature: [u8; 32] = recevied_datum[sigstart..datum_length]
.try_into()
.expect("Taille incorrecte");
let datum_type = value_slice[0];
match datum_type {
CHUNK => {
tree.data.insert(
hash_name,
MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
);
}
DIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.to_vec(),
content_hash: hash,
});
}
let current = DirectoryNode::new(dir_entries);
match current {
Ok(current_node) => {
tree.data
.insert(hash_name, MerkleNode::Directory(current_node));
}
Err(e) => {
println!("{}", e);
}
}
}
BIG => {
let chlidren: Vec<NodeHash> = Vec::new();
tree.data.insert(
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: chlidren,
}),
);
}
BIGDIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.to_vec(),
content_hash: hash,
});
}
let current = BigDirectoryNode::new(dir_entries);
match current {
Ok(current_node) => {
tree.data
.insert(hash_name, MerkleNode::BigDirectory(current_node));
}
Err(e) => {
println!("{}", e);
}
}
}
_ => {}
}
}

View File

@@ -1,10 +1,8 @@
mod cryptographic_signature;
mod data;
mod datum_parsing;
mod message_handling;
mod messages_channels;
mod messages_structure;
mod peers_refresh;
mod registration;
mod server_communication;
@@ -12,20 +10,19 @@ use crate::{
cryptographic_signature::CryptographicSignature,
message_handling::EventType,
messages_channels::{MultipleSenders, start_receving_thread},
messages_structure::{
NATTRAVERSALREQUEST, NATTRAVERSALREQUEST2, ROOTREQUEST, construct_message,
registration::{
get_socket_address, parse_addresses, register_ip_addresses, register_with_the_server,
},
peers_refresh::HandshakeHistory,
registration::{parse_addresses, perform_handshake, register_with_the_server},
server_communication::{generate_id, get_peer_list},
};
use std::{
io::Error,
net::{IpAddr, Ipv4Addr, UdpSocket},
fmt,
sync::{Arc, Mutex},
};
use std::{
net::SocketAddr,
sync::{Arc, Mutex},
io::Error,
net::{SocketAddr, UdpSocket},
str::FromStr,
};
pub struct P2PSharedData {
@@ -34,12 +31,8 @@ pub struct P2PSharedData {
shared_messageslist: Arc<Mutex<HashMap<i32, EventType>>>,
shared_senders: Arc<MultipleSenders>,
server_name: Arc<Mutex<String>>,
handshake_peers: Arc<HandshakeHistory>,
}
use bytes::Bytes;
use p256::pkcs8::der::pem::Base64Encoder;
impl P2PSharedData {
pub fn new(
username: String,
@@ -56,14 +49,12 @@ impl P2PSharedData {
let senders = MultipleSenders::new(1, &shared_socket, cmd_tx);
let shared_senders = Arc::new(senders);
let server_name = Arc::new(Mutex::new("".to_string()));
let handhsake_peers = Arc::new(HandshakeHistory::new());
Ok(P2PSharedData {
shared_socket: shared_socket,
shared_cryptopair: shared_cryptopair,
shared_messageslist: shared_messageslist,
shared_senders: shared_senders,
server_name: server_name,
handshake_peers: handhsake_peers,
})
}
pub fn socket(&self) -> Arc<UdpSocket> {
@@ -94,9 +85,6 @@ impl P2PSharedData {
pub fn cryptopair_ref(&self) -> &CryptographicSignature {
&*self.shared_cryptopair
}
pub fn handshake_ref(&self) -> &HandshakeHistory {
&*self.handshake_peers
}
pub fn messages_list_ref(&self) -> &Mutex<HashMap<i32, EventType>> {
&*self.shared_messageslist
@@ -118,16 +106,13 @@ pub enum NetworkCommand {
ServerHandshake(String, String), // ServerName
FetchPeerList(String), // ServerIP
RegisterAsPeer(String),
Ping(String),
NatTraversal(String, String),
ConnectPeer((String, bool)), // IP:PORT
RequestFileTree(String), // peer_id
Ping(),
ConnectPeer(String), // IP:PORT
RequestFileTree(String), // peer_id
RequestDirectoryContent(String, String),
RequestChunk(String, String),
Disconnect(),
ResetServerPeer(),
Discover(String, String, String),
GetChildren(String, String),
// ...
}
@@ -141,7 +126,7 @@ pub enum NetworkEvent {
PeerListUpdated(Vec<(String, bool)>),
FileTreeReceived(String, Vec<MerkleNode>), // peer_id, content
DataReceived(String, MerkleNode),
FileTreeRootReceived(String, NodeHash),
FileTreeRootReceived(String, String),
HandshakeFailed(),
ServerHandshakeFailed(String),
// ...
@@ -176,8 +161,6 @@ pub fn start_p2p_executor(
// Use tokio to spawn the asynchronous networking logic
tokio::task::spawn(async move {
// P2P/Networking Setup goes here
let handshake_history = Arc::new(Mutex::new(HandshakeHistory::new()));
let handshake_clone = handshake_history.clone();
println!("Network executor started.");
@@ -187,18 +170,66 @@ pub fn start_p2p_executor(
if let Ok(cmd) = cmd_rx.try_recv() {
match cmd {
NetworkCommand::ServerHandshake(username, ip) => {
println!("server handshake called");
if let Some(sd) = shared_data.as_ref() {
start_receving_thread(sd, event_tx.clone(), &handshake_clone);
let res =
perform_handshake(&sd, username, ip, event_tx.clone(), true).await;
} else {
println!("no shared data");
println!("username:{}, ip:{}", username, ip);
let server_addr_query = get_socket_address(username.clone(), ip);
match server_addr_query.await {
Ok(sockaddr_bytes) => {
match String::from_utf8(sockaddr_bytes.to_vec()) {
Ok(s) => {
let addresses = parse_addresses(&s);
if let Some(first) = addresses.first() {
sd.set_servername(username);
// first: &SocketAddr
start_receving_thread(
sd,
*first, // copie le SocketAddr (implémente Copy pour SocketAddr)
);
register_ip_addresses(
sd.cryptopair_ref(),
first.to_string(),
sd.senders_ref(),
sd.messages_list_ref(),
generate_id(),
);
//let res = event_tx
// .send(NetworkEvent::());
} else {
//let res = event_tx.send(NetworkEvent::Error());
let err_msg = format!(
"no valid socket addresses found in: {}",
s
)
.to_string();
let res =
event_tx.send(NetworkEvent::Error(err_msg));
}
}
Err(e) => {
//let res = event_tx.send(NetworkEvent::Error());
let err_msg = format!(
"invalid UTF-8 in socket address bytes: {}",
e
)
.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
}
Err(e) => {
let err_msg =
format!("failed to retreive socket address: {}", e)
.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
}
}
NetworkCommand::ConnectPeer((username, connected)) => {
NetworkCommand::ConnectPeer(addr) => {
println!("[Network] ConnectPeer() called");
println!("[Network] Attempting to connect to: {}", username);
println!("[Network] Attempting to connect to: {}", addr);
// Network logic to connect...
// If successful, send an event back:
// event_tx.send(NetworkEvent::PeerConnected(addr)).unwrap();
@@ -206,56 +237,6 @@ pub fn start_p2p_executor(
NetworkCommand::RequestFileTree(_) => {
println!("[Network] RequestFileTree() called");
}
NetworkCommand::Discover(username, hash, ip) => {
// envoie un handshake au peer, puis un root request
if let Some(sd) = shared_data.as_ref() {
let res = {
let m = handshake_clone.lock().unwrap();
m.get_peer_info_username(username.clone()).cloned()
};
match res {
Some(peerinfo) => {
// envoyer un root request
let rootrequest = construct_message(
ROOTREQUEST,
Vec::new(),
generate_id(),
sd.cryptopair_ref(),
);
match rootrequest {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref().send_via(
0,
resp_msg,
peerinfo.ip.to_string(),
false,
sd.messages_list_ref(),
);
}
}
}
None => {
// envoyer un handshake
let res = perform_handshake(
&sd,
username,
ip,
event_tx.clone(),
false,
)
.await;
}
}
} else {
println!("no shared data");
}
}
NetworkCommand::GetChildren(username, hash) => {
// envoie un datum request au peer
}
NetworkCommand::RequestDirectoryContent(_, _) => {
println!("[Network] RequestDirectoryContent() called");
}
@@ -315,7 +296,7 @@ pub fn start_p2p_executor(
let mut current = String::new();
for i in peers_list.chars() {
if i == '\n' {
peers.push((current.clone(), false));
peers.push(current.clone());
current.clear();
} else {
current.push(i);
@@ -336,7 +317,7 @@ pub fn start_p2p_executor(
NetworkCommand::RegisterAsPeer(_) => {
println!("[Network] RegisterAsPeer() called");
}
NetworkCommand::Ping(String) => {
NetworkCommand::Ping() => {
println!("[Network] Ping() called");
}
NetworkCommand::Disconnect() => {
@@ -355,52 +336,6 @@ pub fn start_p2p_executor(
println!("no p2p data");
}
}
NetworkCommand::NatTraversal(username, ip) => {
if let Some(sd) = shared_data.as_ref() {
println!("username:{}, ip:{}", username, ip);
// user server to send nattraversal request
let server_addr_query =
get_socket_address(sd.servername().clone(), ip.clone());
let peer_addr_query = get_socket_address(username.clone(), ip.clone());
match server_addr_query.await {
Some(server_addr) => match peer_addr_query.await {
Some(peer_addr) => {
let payload = socket_addr_to_vec(server_addr);
print!("{:?}", payload.clone());
let natreq = construct_message(
NATTRAVERSALREQUEST,
server_addr.to_string().into_bytes(),
generate_id(),
&sd.cryptopair(),
);
sd.senders_ref().send_via(
0,
natreq.expect(
"couldnt construct message nattraversalrequest2",
),
server_addr.to_string(),
false,
sd.messages_list_ref(),
);
}
None => {
let err_msg = format!("failed to retreive socket address")
.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
},
None => {
let err_msg =
format!("failed to retreive socket address").to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
}
}
}
}
@@ -414,78 +349,3 @@ pub fn start_p2p_executor(
}
})
}
fn socket_addr_to_vec(addr: SocketAddr) -> Vec<u8> {
let mut v = match addr.ip() {
IpAddr::V4(v4) => v4.octets().to_vec(),
IpAddr::V6(v6) => v6.octets().to_vec(),
};
v.extend(&addr.port().to_be_bytes());
v
}
fn parse_pack(s: &str) -> Option<[u8; 6]> {
// split into "ip" and "port"
let mut parts = s.rsplitn(2, ':');
let port_str = parts.next()?;
let ip_str = parts.next()?; // if missing, invalid
let ip: Ipv4Addr = ip_str.parse().ok()?;
let port: u16 = port_str.parse().ok()?;
let octets = ip.octets();
let port_be = port.to_be_bytes();
Some([
octets[0], octets[1], octets[2], octets[3], port_be[0], port_be[1],
])
}
///
/// sends a get request to the server to get the socket address of the given peer
///
pub async fn get_socket_address(username: String, ip: String) -> Option<SocketAddr> {
let client = reqwest::Client::new();
let uri = format!("{}/peers/{}/addresses", ip, username);
let res = client.get(uri).send().await.expect("couldnt get response");
if res.status().is_success() {
println!("Successfully retreived the addresses.");
} else {
eprintln!(
"Failed to get the peers addresses from the server. Status: {}",
res.status()
);
}
let body: Bytes = res.bytes().await.expect("couldnt get bytes");
match String::from_utf8(body.to_vec()) {
Ok(s) => {
let addresses = parse_addresses(&s);
addresses.iter().copied().find(|a| a.is_ipv4())
}
Err(_) => None,
}
}
pub async fn get_possible_socket_address(username: String, ip: String) -> Vec<SocketAddr> {
let client = reqwest::Client::new();
let uri = format!("{}/peers/{}/addresses", ip, username);
let res = client.get(uri).send().await.expect("couldnt get response");
if res.status().is_success() {
println!("Successfully retreived the addresses.");
} else {
eprintln!(
"Failed to get the peers addresses from the server. Status: {}",
res.status()
);
}
let body: Bytes = res.bytes().await.expect("couldnt get bytes");
match String::from_utf8(body.to_vec()) {
Ok(s) => {
let addresses = parse_addresses(&s);
addresses.iter().copied().filter(|a| a.is_ipv4()).collect()
}
Err(_) => Vec::new(),
}
}

View File

@@ -1,53 +1,52 @@
use crate::{
NetworkEvent, NodeHash,
NetworkEvent,
cryptographic_signature::{
CryptographicSignature, get_peer_key, sign_message, verify_signature,
},
messages_channels::MultipleSenders,
messages_structure::construct_message,
peers_refresh::HandshakeHistory,
messages_structure::HandshakeMessage,
registration,
server_communication::generate_id,
};
use std::sync::{Arc, Mutex};
use std::{collections::HashMap, net::SocketAddr};
use std::{
net::IpAddr,
sync::{Arc, Mutex},
};
pub enum EventType {
SendRootRequest,
ServerHelloReply,
PeerHelloReply,
PeerHello,
}
const ID: usize = 4;
const TYPE: usize = 5;
const LENGTH: usize = 7;
const EXTENSIONS: usize = 4;
const SIGNATURE: usize = 64;
const PING: u8 = 0;
const OK: u8 = 128;
const ERROR: u8 = 129;
const HELLO: u8 = 1;
const HELLOREPLY: u8 = 130;
const ROOTREQUEST: u8 = 2;
const ROOTREPLY: u8 = 131;
const DATUMREQUEST: u8 = 3;
const NODATUM: u8 = 133;
const DATUM: u8 = 132;
const NATTRAVERSALREQUEST: u8 = 4;
const NATTRAVERSALREQUEST2: u8 = 5;
/*pub fn handle_recevied_message(
messages_list: &mut HashMap<i32, EventType>,
recevied_message: &Vec<u8>,
crypto_pair: &CryptographicSignature,
socket_addr: &SocketAddr,
senders: &MultipleSenders,
) {
let message_id: [u8; 4] = recevied_message[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let eventtype = messages_list.get(&id);
match eventtype {
Some(EventType::ServerHelloReply) => {
registration::register_ip_addresses(
&crypto_pair,
socket_addr.ip().to_string(),
&senders,
messages_list,
);
}
Some(_) => print!("Not implemented"),
None => print!("Message not found"),
}
}*/
pub fn handle_recevied_message(
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
recevied_message: &Vec<u8>,
crypto_pair: &CryptographicSignature,
//socket_addr: &SocketAddr,
socket_addr: &SocketAddr,
senders: &MultipleSenders,
server_name: &String,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr,
handhsake_history: &Arc<Mutex<HandshakeHistory>>,
) {
if recevied_message.len() < 4 {
return;
@@ -56,48 +55,8 @@ pub fn handle_recevied_message(
let message_id: [u8; 4] = recevied_message[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let mut is_resp_to_server_handshake = false;
if recevied_message[4] == HELLO {
let length_bytes: [u8; 2] = recevied_message[TYPE..LENGTH]
.try_into()
.expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes) as usize;
let ilength = u16::from_be_bytes(length_bytes);
let received_name = &recevied_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let name = String::from_utf8(received_name.to_vec()).expect("wrong name");
if name.clone() == server_name.clone() {
is_resp_to_server_handshake = true;
}
}
let resp = parse_message(
recevied_message.to_vec(),
id,
crypto_pair,
cmd_tx,
ip,
messages_list,
handhsake_history,
senders,
);
match resp {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
senders.send_via(
0,
resp_msg,
ip.to_string(),
is_resp_to_server_handshake,
messages_list,
);
}
}
// Lock the mutex to access the HashMap
/*let list = messages_list.lock().unwrap();
let list = messages_list.lock().unwrap();
let eventtype = list.get(&id); // Clone the enum so we can release the lock if needed
match eventtype {
@@ -159,315 +118,5 @@ pub fn handle_recevied_message(
}
print!("Message not found for ID: {}", id)
}
}*/
}
pub fn parse_message(
received_message: Vec<u8>,
id: i32,
crypto_pair: &CryptographicSignature,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr,
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
handhsake_history_mutex: &Arc<Mutex<HandshakeHistory>>,
senders: &MultipleSenders,
) -> Option<Vec<u8>> {
let mut handhsake_history = handhsake_history_mutex.lock().unwrap();
let cmd_tx_clone = cmd_tx.clone();
let id_bytes: [u8; 4] = received_message[0..ID]
.try_into()
.expect("Taille incorrecte");
let msgtype = received_message[ID];
let length_bytes: [u8; 2] = received_message[TYPE..LENGTH]
.try_into()
.expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes) as usize;
// verify signature
match msgtype {
HELLO | HELLOREPLY | NODATUM | NATTRAVERSALREQUEST | NATTRAVERSALREQUEST2 => {
let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength);
let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let received_username = String::from_utf8(received_name.to_vec());
match received_username {
Ok(username) => {
let peer_pubkey =
match handhsake_history.get_peer_info_username(username.clone()) {
Some(peerinfo) => peerinfo.pubkey,
_ => tokio::runtime::Runtime::new()
.unwrap()
.block_on(get_peer_key(&username))
.expect("failed to retrieve public key"),
};
match msgtype {
HELLOREPLY => {
handhsake_history.add_new_handshake(peer_pubkey, "".to_string(), ip);
}
_ => {}
}
let signature: [u8; SIGNATURE] = received_message
[LENGTH + msg_length..LENGTH + msg_length + SIGNATURE]
.try_into()
.expect("Taille incorrecte");
if !verify_signature(peer_pubkey, &received_message) {
println!(
"incorrect signature from given peer: {}, ignoring message of type {} with id {}",
&username, received_message[ID], id
);
return None;
}
}
Err(e) => {
println!("incorrect name: {}", e);
return None;
}
}
}
ROOTREPLY => {
let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength);
if let Some(peerinfo) = handhsake_history.get_peer_info_ip(ip.to_string()) {
if !verify_signature(peerinfo.pubkey, &received_message) {
println!(
"incorrect signature from given peer: {}, ignoring message of type {} with id {}",
&peerinfo.username, received_message[ID], id
);
return None;
} else {
println!("signature verified");
}
}
}
_ => {}
}
// Message handling
let mut constructed_message: Option<Vec<u8>> = None;
match msgtype {
// PING
//
// envoie un OK
PING => {
constructed_message = construct_message(OK, Vec::new(), id, crypto_pair);
}
//
// OK
//
// rien ?
// si NATTRAVERSALREQUEST alors
NATTRAVERSALREQUEST => {
// send ok & send nattraversalrequest2 to peer
constructed_message = construct_message(OK, Vec::new(), id, crypto_pair);
let ilength = u16::from_be_bytes(length_bytes);
let received_address =
&received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let address = String::from_utf8(received_address.to_vec()).expect("wrong name");
let natreq2 = construct_message(
NATTRAVERSALREQUEST2,
ip.to_string().into_bytes(),
id,
crypto_pair,
);
senders.send_via(
0,
natreq2.expect("couldnt construct message nattraversalrequest2"),
address,
false,
&messages_list,
);
}
NATTRAVERSALREQUEST2 => {
// send ok & send ping to peer
constructed_message = construct_message(OK, Vec::new(), id, crypto_pair);
let ilength = u16::from_be_bytes(length_bytes);
let received_address = &received_message[LENGTH..LENGTH + ilength as usize];
let address = String::from_utf8(received_address.to_vec()).expect("wrong name");
let pingreq = construct_message(PING, Vec::new(), id, crypto_pair);
senders.send_via(
0,
pingreq.expect("couldnt construct message ping request"),
address,
false,
&messages_list,
);
}
//
// ERROR
//
// affiche un msg d'erreur
ERROR => {
if let Ok(err_received) =
String::from_utf8(received_message[LENGTH..(msg_length + LENGTH)].to_vec())
{
let err_msg = format!("Error received from peer {} : {}", ip, err_received);
let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg));
} else {
let err_msg = format!("Error received from peer {} : N/A", ip,);
let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg));
}
}
// HELLO
//
// envoie une hello reply
//
HELLO => {
let mut payload = Vec::new();
payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let helloreply = construct_message(HELLOREPLY, payload, id, crypto_pair);
return helloreply;
}
// HELLOREPLY
//
//
// ajoute a la liste des peers handshake
HELLOREPLY => {
// ajoute l'username a la liste des peers handshake
let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH]
.try_into()
.expect("incorrect size"),
);
let received_username =
&received_message[LENGTH + EXTENSIONS..LENGTH + received_length as usize];
handhsake_history.update_peer_info(
ip.to_string(),
String::from_utf8(received_username.to_vec()).expect("invalid conversion"),
);
// verifie s'il faut renvoyer un root request
let guard = messages_list.lock().expect("Échec du verrouillage");
let res = guard.get(&id);
match res {
Some(ev) => {
match ev {
EventType::SendRootRequest => {
// envoyer la root request
let rootrequest = construct_message(
ROOTREQUEST,
Vec::new(),
generate_id(),
crypto_pair,
);
return rootrequest;
}
}
}
None => {}
}
}
//
// ROOTREQUEST
//
// envoie un root reply
//
// ROOTREPLY
//
ROOTREPLY => {
// recuperer le pseudo du peers ayant repondu
let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string());
match peers_exist {
Some(peerinfo) => {
// envoyer le hash a la gui
let received_hash: NodeHash = received_message[LENGTH..(32 + LENGTH)]
.try_into()
.expect("incorrect size");
let res = cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived(
peerinfo.username.clone(),
received_hash,
));
println!("file tree sent")
}
None => {
eprintln!("no peers found");
}
}
}
//
// DATUMREQUEST
//
// envoie le datum
//
// NODATUM
//
// affiche un msg d'erreur
//
// DATUM
//
// parcourt le directory recu ou le big directory et renvoie une DATUMREQUEST pour chaque
// directory ou big directory lu
//
// NATTRAVERSALREQUEST
//
// repond OK et envoie un NATTRAVERSALREQUEST2 au pair B
//
// NATTRAVERSALREQUEST2
//
// envoie OK à S puis envoie un ping à S
// PING
//
// envoie un OK
//
// OK
//
// si NATTRAVERSALREQUEST alors
//
// ERROR
//
// affiche un msg d'erreur
//
// HELLO
//
// envoie une hello reply
//
// HELLOREPLY
//
// envoie un root request
//
// ROOTREQUEST
//
// envoie un root reply
//
// ROOTREPLY
//
// envoie un datum request
//
// DATUMREQUEST
//
// envoie le datum
//
// NODATUM
//
// affiche un msg d'erreur
//
// DATUM
//
// parcourt le directory recu ou le big directory et renvoie une DATUMREQUEST pour chaque
// directory ou big directory lu
//
// NATTRAVERSALREQUEST
//
// repond OK et envoie un NATTRAVERSALREQUEST2 au pair B
//
// NATTRAVERSALREQUEST2
//
// envoie OK à S puis envoie un ping à S
_ => return None,
};
constructed_message
}

View File

@@ -2,7 +2,6 @@ use crate::P2PSharedData;
use crate::cryptographic_signature::CryptographicSignature;
use crate::message_handling::EventType;
use crate::message_handling::handle_recevied_message;
use crate::peers_refresh::HandshakeHistory;
use std::collections::HashMap;
use std::net::SocketAddr;
use std::net::UdpSocket;
@@ -22,9 +21,9 @@ pub struct MultipleSenders {
}
pub struct Message {
pub payload: Vec<u8>,
pub address: String,
pub is_resp_to_server_handshake: bool,
payload: Vec<u8>,
address: String,
is_resp_to_server_handshake: bool,
}
struct RetryMessage {
@@ -206,74 +205,60 @@ impl MultipleSenders {
data: Vec<u8>,
remote_addr: String,
is_resp_to_server_handshake: bool,
messages_list: &Mutex<HashMap<i32, EventType>>,
) {
println!(
"is_resp_to_server_handshake {}",
is_resp_to_server_handshake
);
let msg_to_send = Message {
payload: data.clone(),
address: remote_addr,
is_resp_to_server_handshake,
};
if let Some(sender) = self.senders.get(channel_idx) {
let _ = sender.send(msg_to_send);
}
if !is_resp_to_server_handshake {
let mut guard = messages_list.lock().unwrap();
let message_id: [u8; 4] = data[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
guard.insert(id, EventType::SendRootRequest);
let _ = sender.send(Message {
payload: data,
address: remote_addr,
is_resp_to_server_handshake,
});
}
}
/*pub fn start_receving_thread(
socket: &Arc<UdpSocket>,
messages_list: &Arc<HashMap<i32, EventType>>,
crypto_pair: &Arc<CryptographicSignature>,
socket_addr: SocketAddr,
senders: &Arc<MultipleSenders>,
) {
let sock_clone = Arc::clone(socket);
let cryptopair_clone = Arc::clone(crypto_pair);
let senders_clone = Arc::clone(senders);
let messages_clone = Arc::clone(messages_list);
thread::spawn(move || {
let mut buf = [0u8; 1024];
loop {
match sock_clone.recv_from(&mut buf) {
Ok((amt, src)) => {
handle_recevied_message(
&messages_clone,
&buf.to_vec(),
&cryptopair_clone,
&socket_addr,
&senders_clone,
);
println!("Reçu {} octets de {}: {:?}", amt, src, &buf[..amt]);
}
Err(e) => eprintln!("Erreur de réception: {}", e),
}
}
});
}*/
}
pub fn start_receving_thread(
shared_data: &P2PSharedData,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
handshake_history: &Arc<Mutex<HandshakeHistory>>,
/*pub fn start_receving_thread(
socket: &Arc<UdpSocket>,
messages_list: &Arc<HashMap<i32, EventType>>,
crypto_pair: &Arc<CryptographicSignature>,
socket_addr: SocketAddr,
senders: &Arc<MultipleSenders>,
) {
let sock_clone = Arc::clone(socket);
let cryptopair_clone = Arc::clone(crypto_pair);
let senders_clone = Arc::clone(senders);
let messages_clone = Arc::clone(messages_list);
thread::spawn(move || {
let mut buf = [0u8; 1024];
loop {
match sock_clone.recv_from(&mut buf) {
Ok((amt, src)) => {
handle_recevied_message(
&messages_clone,
&buf.to_vec(),
&cryptopair_clone,
&socket_addr,
&senders_clone,
);
println!("Reçu {} octets de {}: {:?}", amt, src, &buf[..amt]);
}
Err(e) => eprintln!("Erreur de réception: {}", e),
}
}
});
}*/
pub fn start_receving_thread(shared_data: &P2PSharedData, socket_addr: SocketAddr) {
let sock_clone = shared_data.socket();
let cryptopair_clone = shared_data.cryptopair();
let senders_clone = shared_data.senders();
let messages_clone = shared_data.messages_list();
let servername_clone = shared_data.servername();
let handshake_clone = handshake_history.clone();
thread::spawn(move || {
let mut buf = [0u8; 1024];
loop {
@@ -286,11 +271,9 @@ pub fn start_receving_thread(
&messages_clone,
&received_data,
&cryptopair_clone,
&socket_addr,
&senders_clone,
&servername_clone,
cmd_tx.clone(),
src,
&handshake_clone,
);
}
Err(e) => eprintln!("Erreur de réception: {}", e),

View File

@@ -1,72 +1,3 @@
use crate::cryptographic_signature::{CryptographicSignature, sign_message};
const ID: usize = 4;
const TYPE: usize = 5;
const LENGTH: usize = 7;
const EXTENSIONS: usize = 4;
const SIGNATURE: usize = 64;
pub(crate) const PING: u8 = 0;
pub(crate) const OK: u8 = 128;
pub(crate) const ERROR: u8 = 129;
pub(crate) const HELLO: u8 = 1;
pub(crate) const HELLOREPLY: u8 = 130;
pub(crate) const ROOTREQUEST: u8 = 2;
pub(crate) const ROOTREPLY: u8 = 131;
pub(crate) const DATUMREQUEST: u8 = 3;
pub(crate) const NODATUM: u8 = 133;
pub(crate) const DATUM: u8 = 132;
pub(crate) const NATTRAVERSALREQUEST: u8 = 4;
pub(crate) const NATTRAVERSALREQUEST2: u8 = 5;
pub fn construct_message(
msgtype: u8,
payload: Vec<u8>,
id: i32,
crypto_pair: &CryptographicSignature,
) -> Option<Vec<u8>> {
let mut message = Vec::new();
// ID
// type
message.extend_from_slice(&id.to_be_bytes());
message.push(msgtype);
match msgtype {
HELLO | HELLOREPLY => {
// length
let a = payload.len() as u16;
println!("payload size:{}", a);
message.extend_from_slice(&a.to_be_bytes());
message.extend_from_slice(&payload);
let signature = sign_message(crypto_pair, &message);
return Some(signature);
}
PING | OK | ROOTREQUEST => {
message.extend_from_slice(&0u16.to_be_bytes());
return Some(message);
}
ERROR | DATUMREQUEST => {
message.extend_from_slice(&payload.len().to_be_bytes());
message.extend_from_slice(&payload);
return Some(message);
}
ROOTREPLY | NODATUM | DATUM | NATTRAVERSALREQUEST => {
println!("payload:{:?}", &payload);
message.extend_from_slice(&(payload.len() as u16).to_be_bytes());
message.extend_from_slice(&payload);
println!("payload:{:?}", &message);
let signature = sign_message(crypto_pair, &message);
message.extend_from_slice(&signature);
return Some(message);
}
_ => {}
}
None
}
pub struct UDPMessage {
id: u32,
msg_type: u8,

View File

@@ -1,160 +0,0 @@
// this class consists of a thread that will re send pings every time the first element
// of the stack is at the correct unix time
use std::{
collections::{HashMap, VecDeque},
net::{AddrParseError, Ipv4Addr, SocketAddr},
ops::Add,
process::Command,
sync::{Arc, Mutex},
thread,
time::{self, Duration, SystemTime},
};
use crate::NetworkEvent;
use crate::{
P2PSharedData, construct_message, generate_id, messages_structure,
registration::perform_handshake,
};
use crossbeam_channel::{Receiver, Sender};
use p256::ecdsa::VerifyingKey;
#[derive(Debug, Clone)]
pub struct PeerInfo {
pub username: String,
pub pubkey: VerifyingKey,
pub ip: SocketAddr,
}
pub struct HandshakeHistory {
//time_k_ip_v: HashMap<u64, u64>,
username_k_peerinfo_v: HashMap<String, PeerInfo>,
ip_k_peerinfo_v: HashMap<String, PeerInfo>,
}
impl HandshakeHistory {
pub fn new() -> HandshakeHistory {
HandshakeHistory {
//time_k_ip_v: HashMap::new(),
//ip_k_peerinfo_v: HashMap::new(),
username_k_peerinfo_v: HashMap::new(),
ip_k_peerinfo_v: HashMap::new(),
}
}
/*pub fn update_handshake(&self) {
let hashmap_shared = Arc::new(self.username_k_peerinfo_v);
thread::spawn(move || {
let selfhashmap = hashmap_shared.clone();
loop {
for peer in selfhashmap.keys() {
let peer_ip = selfhashmap.get(peer);
// send ping
}
let mut child = Command::new("sleep").arg("10").spawn().unwrap();
let _result = child.wait().unwrap();
}
});
}*/
pub fn get_peer_info_username(&self, username: String) -> Option<&PeerInfo> {
self.username_k_peerinfo_v.get(&username).clone()
}
pub fn get_peer_info_ip(&self, ip: String) -> Option<&PeerInfo> {
self.ip_k_peerinfo_v.get(&ip).clone()
}
pub fn update_handshake(&self) {
// clone the map so we own it (cheap if PeerInfo is Clone)
let map_clone: Arc<HashMap<String, PeerInfo>> =
Arc::new(self.username_k_peerinfo_v.clone());
//let map_ip_clone: Arc<HashMap<String, PeerInfo>> = Arc::new(self.ip_k_peerinfo_v.clone());
let map_for_thread = Arc::clone(&map_clone);
thread::spawn(move || {
loop {
// Arc<HashMap<..>> derefs to &HashMap so these reads work
for (peer, peerinfo) in map_for_thread.iter() {
// send ping to peerinfo
}
thread::sleep(Duration::from_secs(10));
}
});
}
pub fn update_peer_info(&mut self, ip: String, username: String) {
let peerinfo = self.get_peer_info_ip(ip.clone());
match peerinfo {
Some(peer_info) => match ip.parse::<SocketAddr>() {
Ok(addr) => {
let new_peer_info = PeerInfo {
username: username.clone(),
pubkey: peer_info.pubkey,
ip: addr,
};
self.ip_k_peerinfo_v.insert(ip, new_peer_info.clone());
self.username_k_peerinfo_v.insert(username, new_peer_info);
}
Err(e) => eprintln!("parse error: {}", e),
},
None => {
eprintln!("no peer info found in hashmap")
}
}
}
pub fn add_new_handshake(&mut self, hash: VerifyingKey, username: String, ip: SocketAddr) {
let peerinfo = PeerInfo {
username: username.clone(),
pubkey: hash,
ip,
};
self.username_k_peerinfo_v
.insert(username, peerinfo.clone());
self.ip_k_peerinfo_v
.insert(ip.to_string(), peerinfo.clone());
}
}
pub fn perform_discover(
username: String,
hash: String,
sd: &P2PSharedData,
server_ip: String,
event_tx: Sender<NetworkEvent>,
) {
// first, sends handshake
if hash == "root" {
perform_handshake(sd, username, server_ip, event_tx, false);
/*if let Some(data) = construct_message(
messages_structure::ROOTREQUEST,
Vec::new(),
generate_id(),
sd.cryptopair_ref(),
) {
if let Some(peerinfo) = sd.handshake_ref() {
sd.senders_ref()
.send_via(0, data, peerinfo.ip.to_string(), false);
}
}*/
} else {
// envoyer un datum request
}
}
#[cfg(test)]
mod tests {
use std::net::{IpAddr, Ipv4Addr};
use super::*;
/*#[test]
fn creating_cryptographic_signature() {
let mut hh = HandshakeHistory::new();
hh.add_new_handshake(
20,
"putain".to_string(),
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 1),
);
}*/
}

View File

@@ -1,14 +1,10 @@
use bytes::Bytes;
use getrandom::Error;
use crate::NetworkEvent;
use crate::P2PSharedData;
use crate::cryptographic_signature::{CryptographicSignature, formatPubKey, sign_message};
use crate::get_socket_address;
use crate::message_handling::EventType;
use crate::messages_channels::MultipleSenders;
use crate::messages_structure::construct_message;
use crate::server_communication::generate_id;
use crossbeam_channel::{Receiver, Sender};
use crate::messages_channels::{Message, MultipleSenders};
use crate::messages_structure::{HandshakeMessage, UDPMessage};
use std::collections::HashMap;
use std::net::SocketAddr;
use std::net::UdpSocket;
@@ -33,6 +29,26 @@ pub async fn register_with_the_server(
Ok(())
}
///
/// sends a get request to the server to get the socket address of the given peer
///
pub async fn get_socket_address(username: String, ip: String) -> Result<Bytes, reqwest::Error> {
let client = reqwest::Client::new();
let uri = format!("{}/peers/{}/addresses", ip, username);
let res = client.get(uri).send().await?;
if res.status().is_success() {
println!("Successfully retreived the addresses.");
} else {
eprintln!(
"Failed to get the peers addresses from the server. Status: {}",
res.status()
);
}
let body: Bytes = res.bytes().await?;
Ok(body)
}
pub fn parse_addresses(input: &String) -> Vec<SocketAddr> {
let mut addrs = Vec::new();
for line in input.lines() {
@@ -50,47 +66,24 @@ pub fn parse_addresses(input: &String) -> Vec<SocketAddr> {
///
/// registers the IP addresses by sending a Hello request to the server.
///
pub async fn perform_handshake(
sd: &P2PSharedData,
username: String,
ip: String,
event_tx: Sender<NetworkEvent>,
is_server_handshake: bool,
pub fn register_ip_addresses(
crypto_pair: &CryptographicSignature,
server_uri: String,
senders: &MultipleSenders,
messages_list: &Mutex<HashMap<i32, EventType>>,
id: i32,
) {
println!("username: {}, ip: {}", username.clone(), ip.clone());
let crypto_pair = sd.cryptopair_ref();
let senders = sd.senders_ref();
let messages_list = sd.messages_list_ref();
let id = generate_id();
let server_addr_query = get_socket_address(username.clone(), ip.clone());
match server_addr_query.await {
Some(sockaddr_bytes) => {
sd.set_servername(username);
// first: &SocketAddr
let mut payload = Vec::new();
payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let hello_handshake = construct_message(1, payload, id, crypto_pair);
match hello_handshake {
Some(handshake_message) => {
senders.send_via(
0,
handshake_message,
sockaddr_bytes.to_string(),
is_server_handshake,
messages_list,
);
}
None => {}
}
}
None => {
let err_msg = format!("failed to retreive socket address:").to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
/*let mut list = messages_list.lock().expect("Failed to lock messages_list");
let username_size = crypto_pair.username.len();
let hello_handshake = HandshakeMessage::hello(
id as u32,
username_size as u16 + 4,
crypto_pair.username.clone(),
);
//HandshakeMessage::display(&hello_handshake);
let hello_handshake_serialized = hello_handshake.serialize();
let message_signed = sign_message(crypto_pair, &hello_handshake_serialized);
senders.send_via(0, message_signed, server_uri, false);
let mut list = messages_list.lock().expect("Failed to lock messages_list");
match list.get(&id) {
Some(_) => {
list.remove(&id);
@@ -99,13 +92,12 @@ pub async fn perform_handshake(
list.insert(id, EventType::ServerHelloReply);
}
}
println!("message sent: {}", &id);*/
println!("message sent: {}", &id);
// 3. Perform the insertion
/*let mut buf = [0u8; 1024];
socket.recv_from(&mut buf).expect("receive failed");
let hello_handshake_received = UDPMessage::parse(buf.to_vec());
hello_handshake_received.display();*/
//TODO
}
#[cfg(test)]

36
todo.md
View File

@@ -2,12 +2,6 @@
## peer discovery
## handshake
# Todo
## peer discovery
- get rsquest to the uri /peers/
## registration with the server
@@ -21,7 +15,6 @@
## handshake
- handshake structure OK
- 5min timeout after handshake
- matain connection every 4 min
@@ -34,8 +27,6 @@
- setting in gui to act as a relay
- chunk, directory, big, bigdirectory structures
## fonctionnalités application
## nat traversal
- make hello and helloreply messages set the first extension bit to announce that peer is available for nat traversal
@@ -45,29 +36,12 @@
fonctionnalités :
s'enregistrer avec le serveur OK
rechercher un pair
generer une clé publique OK
rechercher les fichiers d'un pair
telechargement des fichiers
choisir un dossier à partager
choisir le nombre de canaux
se deconnecter du réseau
handshake server DOING
se deconnecter du réseau DOING
## autre
socket ipv6
# FAIT
- choisir un pseudo OK
- get rsquest to the uri /peers/ OK
- generation of the cryptographic key OK
- put request to the uri (check if the peer is already connected) OK
- get request to the uri /peers/key to get the public key of a peer OK
- get request to the uri /peers/key/addresses OK
- udp handshakes OK
- handshake structure OK
- s'enregistrer avec le serveur OK
- generer une clé publique OK
- verifier signature OK
- 2 channels -> un pour envoyer et un pour recevoir OK
2 channels -> un pour envoyer et un pour recevoir OK