13 Commits

Author SHA1 Message Date
Tiago Batista Cardoso
cb2e89b1e9 working 2026-01-24 19:47:15 +01:00
Tiago Batista Cardoso
524eaec76d decent progress 2026-01-22 01:05:02 +01:00
TIBERGHIEN corentin
34a9db047d ping deadlock 2026-01-22 00:40:29 +01:00
Tiago Batista Cardoso
fe04c8ed27 tried 2026-01-22 00:40:21 +01:00
Tiago Batista Cardoso
1f41ba5261 give up 2026-01-22 00:30:17 +01:00
Tiago Batista Cardoso
7eb1ab119d wip 2026-01-22 00:14:26 +01:00
Tiago Batista Cardoso
0799841cf2 splash 2026-01-21 23:58:15 +01:00
Tiago Batista Cardoso
424c11c5aa work 2026-01-21 22:48:05 +01:00
Tiago Batista Cardoso
271fdbbb4c temp 2026-01-21 17:40:21 +01:00
Tiago Batista Cardoso
bdb800a986 fixed deprecated function use 2026-01-21 17:03:07 +01:00
TIBERGHIEN corentin
8b2ab4861b zzzz 2026-01-21 02:45:48 +01:00
TIBERGHIEN corentin
dacedd1ceb exp backoff and theads handling 2026-01-20 01:10:09 +01:00
08518892f2 Merge pull request 'nat_transversal' (#3) from nat_transversal into master
Reviewed-on: #3
2026-01-16 10:20:01 +00:00
15 changed files with 1208 additions and 882 deletions

View File

@@ -4,8 +4,9 @@ use client_network::{
}; };
use crossbeam_channel::{Receiver, Sender}; use crossbeam_channel::{Receiver, Sender};
use egui::{ use egui::{
Align, Align2, Button, CentralPanel, CollapsingHeader, Context, Id, LayerId, Layout, Order, Align, Align2, Button, CentralPanel, CollapsingHeader, Color32, Context, CornerRadius, Frame,
Popup, ScrollArea, SidePanel, TextStyle, TopBottomPanel, Ui, ViewportCommand, Id, LayerId, Layout, Order, Popup, Response, ScrollArea, SidePanel, Stroke, TextStyle,
TopBottomPanel, Ui, ViewportCommand,
}; };
use std::{collections::HashMap, fmt::format}; use std::{collections::HashMap, fmt::format};
@@ -43,6 +44,7 @@ pub struct P2PClientApp {
show_network_popup: bool, // gérer selon besoin show_network_popup: bool, // gérer selon besoin
error_message: Option<String>, // Some(message) -> afficher, None -> rien error_message: Option<String>, // Some(message) -> afficher, None -> rien
success_message: Option<String>, // Some(message) -> afficher, None -> rien
// //
active_server: String, active_server: String,
} }
@@ -62,7 +64,7 @@ impl P2PClientApp {
network_cmd_tx: cmd_tx, network_cmd_tx: cmd_tx,
network_event_rx: event_rx, network_event_rx: event_rx,
status_message: "Client Initialized. Awaiting network status...".to_string(), status_message: "Client Initialized. Awaiting network status...".to_string(),
known_peers: vec![("bob".to_string(), true)], known_peers: Vec::new(),
connect_address_input: "https://jch.irif.fr:8443".to_string(), connect_address_input: "https://jch.irif.fr:8443".to_string(),
connected_address: "".to_string(), connected_address: "".to_string(),
loaded_fs, loaded_fs,
@@ -70,6 +72,7 @@ impl P2PClientApp {
server_status: ServerStatus::NotConnected, server_status: ServerStatus::NotConnected,
show_network_popup: false, show_network_popup: false,
error_message: None, error_message: None,
success_message: None,
connect_name_input: "bob".to_string(), connect_name_input: "bob".to_string(),
active_server: "".to_string(), active_server: "".to_string(),
} }
@@ -77,9 +80,15 @@ impl P2PClientApp {
pub fn show_error(&mut self, msg: impl Into<String>) { pub fn show_error(&mut self, msg: impl Into<String>) {
self.error_message = Some(msg.into()); self.error_message = Some(msg.into());
} }
pub fn show_success(&mut self, msg: impl Into<String>) {
self.success_message = Some(msg.into());
}
pub fn clear_error(&mut self) { pub fn clear_error(&mut self) {
self.error_message = None; self.error_message = None;
} }
pub fn clear_success(&mut self) {
self.success_message = None;
}
} }
// --- eframe::App Trait Implementation --- // --- eframe::App Trait Implementation ---
@@ -120,10 +129,7 @@ impl eframe::App for P2PClientApp {
self.known_peers = peers; self.known_peers = peers;
} }
NetworkEvent::FileTreeReceived(_peer_id, _) => { NetworkEvent::FileTreeReceived(node_hash, merklenode) => {
todo!();
//self.loaded_tree_nodes.insert(_peer_id, tree);
//self.status_message = "🔄 File tree updated successfully.".to_string(); //self.status_message = "🔄 File tree updated successfully.".to_string();
} }
NetworkEvent::FileTreeRootReceived(peer_id, root_hash) => { NetworkEvent::FileTreeRootReceived(peer_id, root_hash) => {
@@ -178,6 +184,9 @@ impl eframe::App for P2PClientApp {
NetworkEvent::Error(err) => { NetworkEvent::Error(err) => {
self.show_error(err); self.show_error(err);
} }
NetworkEvent::Success(msg) => {
self.show_success(msg);
}
NetworkEvent::DataReceived(_, merkle_node) => todo!(), NetworkEvent::DataReceived(_, merkle_node) => todo!(),
NetworkEvent::HandshakeFailed() => {} NetworkEvent::HandshakeFailed() => {}
NetworkEvent::ServerHandshakeFailed(err) => { NetworkEvent::ServerHandshakeFailed(err) => {
@@ -363,13 +372,24 @@ impl eframe::App for P2PClientApp {
let is_active = let is_active =
self.active_peer.as_ref().map_or(false, |id| id == &peer.0); // if peer.id == self.active_peer_id self.active_peer.as_ref().map_or(false, |id| id == &peer.0); // if peer.id == self.active_peer_id
let selectable; let selectable: Response;
if &self.active_server == &peer.0 { if &self.active_server == &peer.0 {
selectable = // Create a frame with green background and render the selectable inside it.
ui.selectable_label(is_active, format!("{} 📡 🌀", peer.0)) // Adjust rounding, padding and stroke as desired.
let frame = Frame {
fill: Color32::DARK_BLUE,
stroke: Stroke::default(),
corner_radius: CornerRadius::from(0.5),
..Default::default()
};
let internal = frame.show(ui, |ui| {
ui.selectable_label(is_active, format!("{}", peer.0))
});
selectable = internal.response;
} else { } else {
selectable = ui.selectable_label(is_active, format!("{}", peer.0)); selectable = ui.selectable_label(is_active, format!("{}", peer.0));
} }
if selectable.clicked() { if selectable.clicked() {
// switch to displaying this peer's tree // switch to displaying this peer's tree
self.active_peer = Some(peer.0.clone()); self.active_peer = Some(peer.0.clone());
@@ -406,9 +426,10 @@ impl eframe::App for P2PClientApp {
_ => {} _ => {}
} }
if ui.button("Send Ping").clicked() { if ui.button("Send Ping").clicked() {
let res = self let res = self.network_cmd_tx.send(NetworkCommand::Ping(
.network_cmd_tx peer.0.to_string(),
.send(NetworkCommand::Ping(peer.0.to_string())); self.connected_address.clone(),
));
} }
if ui.button("Send Nat Traversal Request").clicked() { if ui.button("Send Nat Traversal Request").clicked() {
match self.network_cmd_tx.send(NetworkCommand::NatTraversal( match self.network_cmd_tx.send(NetworkCommand::NatTraversal(
@@ -478,6 +499,20 @@ impl eframe::App for P2PClientApp {
}); });
ctx.request_repaint(); ctx.request_repaint();
} }
if let Some(msg) = &self.success_message {
let msg = msg.clone();
egui::Window::new("Success")
.collapsible(false)
.resizable(false)
.anchor(egui::Align2::CENTER_CENTER, [0.0, 0.0])
.show(ctx, |ui| {
ui.label(&msg);
if ui.button("OK").clicked() {
self.clear_success();
}
});
ctx.request_repaint();
}
ctx.request_repaint_after(std::time::Duration::from_millis(10)); ctx.request_repaint_after(std::time::Duration::from_millis(10));
} }
@@ -573,7 +608,7 @@ impl P2PClientApp {
.enabled(true) .enabled(true)
.show(ui, |ui| { .show(ui, |ui| {
for child in &node.children_hashes { for child in &node.children_hashes {
self.draw_file_node(ui, child.content_hash, tree, depth + 1, None); self.draw_file_node(ui, child.clone(), tree, depth + 1, None);
} }
}); });
} }

View File

@@ -7,7 +7,6 @@ use p256::ecdsa::{
signature::{Signer, Verifier}, signature::{Signer, Verifier},
}; };
use rand_core::OsRng; use rand_core::OsRng;
use reqwest::Error;
use sha2::{Digest, Sha256}; use sha2::{Digest, Sha256};
/// ///
@@ -51,24 +50,19 @@ pub async fn get_peer_key(username: &String) -> Result<VerifyingKey, reqwest::Er
let client = reqwest::Client::new(); let client = reqwest::Client::new();
let uri = format!("https://jch.irif.fr:8443/peers/{}/key", username); let uri = format!("https://jch.irif.fr:8443/peers/{}/key", username);
let res = client.get(uri).send().await?; let res = client.get(uri).send().await?;
if res.status().is_success() {
match res.error_for_status_ref() { println!("Successfully retreived the peers key.");
Ok(_) => { } else {
println!("Successfully retreived the peers key."); eprintln!(
let body: Bytes = res.bytes().await?; "Failed to get the peers key from the server. Status: {}",
let slice: &[u8] = body.as_ref(); res.status()
let body_bytes: &[u8; 64] = slice.try_into().expect("size error"); );
let received_key = convert_verifyingkey(body_bytes);
Ok(received_key)
}
Err(e) => {
eprintln!(
"Failed to get the peers key from the server. Status: {}",
res.status()
);
Err(e)
}
} }
let body: Bytes = res.bytes().await?;
let slice: &[u8] = body.as_ref();
let body_bytes: &[u8; 64] = slice.try_into().expect("size error");
let received_key = convert_verifyingkey(body_bytes);
Ok(received_key)
} }
fn convert_verifyingkey(raw_xy: &[u8; 64]) -> VerifyingKey { fn convert_verifyingkey(raw_xy: &[u8; 64]) -> VerifyingKey {

View File

@@ -3,51 +3,12 @@ use std::collections::HashMap;
use std::hash::{DefaultHasher, Hash, Hasher}; use std::hash::{DefaultHasher, Hash, Hasher};
// --- Constants --- // --- Constants ---
const MAX_CHUNK_DATA_SIZE: usize = 1024; pub const MAX_CHUNK_DATA_SIZE: usize = 1024;
const MAX_DIRECTORY_ENTRIES: usize = 16; pub const MAX_DIRECTORY_ENTRIES: usize = 16;
const MAX_BIG_CHILDREN: usize = 32; pub const MAX_BIG_CHILDREN: usize = 32;
const MIN_BIG_CHILDREN: usize = 2; pub const MIN_BIG_CHILDREN: usize = 2;
const FILENAME_HASH_SIZE: usize = 32; pub const FILENAME_HASH_SIZE: usize = 32;
const DIRECTORY_ENTRY_SIZE: usize = FILENAME_HASH_SIZE * 2; // 64 bytes pub const DIRECTORY_ENTRY_SIZE: usize = FILENAME_HASH_SIZE * 2; // 64 bytes
fn hash(data: &[u8]) -> NodeHash {
let mut hasher = DefaultHasher::new();
data.hash(&mut hasher);
let hash_u64 = hasher.finish();
let mut hash_array = [0u8; FILENAME_HASH_SIZE];
// Simple way to spread a 64-bit hash across 32 bytes for a unique-ish ID
for i in 0..8 {
hash_array[i] = (hash_u64 >> (i * 8)) as u8;
}
hash_array // The rest remains 0, satisfying the 32-byte requirement
}
fn generate_random_filename() -> [u8; FILENAME_HASH_SIZE] {
let mut rng = rand::rng();
let mut filename_bytes = [0; FILENAME_HASH_SIZE];
// Generate a random length for the base name
let name_len = rng.random_range(5..21);
// Generate random alphanumeric characters
for i in 0..name_len {
let char_code = rng.random_range(97..123); // 'a' through 'z'
if i < FILENAME_HASH_SIZE {
filename_bytes[i] = char_code as u8;
}
}
// Append a common extension
let ext = if rng.random_bool(0.5) { ".txt" } else { ".dat" };
let ext_bytes = ext.as_bytes();
let start_index = name_len.min(FILENAME_HASH_SIZE - ext_bytes.len());
if start_index < FILENAME_HASH_SIZE {
filename_bytes[start_index..(start_index + ext_bytes.len())].copy_from_slice(ext_bytes);
}
filename_bytes
}
pub type NodeHash = [u8; FILENAME_HASH_SIZE]; pub type NodeHash = [u8; FILENAME_HASH_SIZE];
@@ -80,100 +41,6 @@ impl MerkleTree {
} }
} }
/*fn generate_random_file_node(
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let is_big = rng.random_bool(0.2); // 20% chance of being a big file
if !is_big {
// Generate a simple Chunk Node
let node = MerkleNode::Chunk(ChunkNode::new_random());
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a Big Node (a file composed of chunks)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(8)); // Limit complexity
let mut children_hashes = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Chunk or Big; for simplicity, we only generate Chunk children here.
let chunk_node = MerkleNode::Chunk(ChunkNode::new_random());
let chunk_hash = hash(&chunk_node.serialize());
storage.insert(chunk_hash, chunk_node);
children_hashes.push(chunk_hash);
}
let node = MerkleNode::Big(BigNode::new(children_hashes)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}*/
/*fn generate_random_directory_node(
depth: u32,
max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let current_depth = depth + 1;
let is_big_dir = rng.random_bool(0.3) && current_depth < max_depth;
if !is_big_dir || current_depth >= max_depth {
// Generate a simple Directory Node (leaf level directory)
let num_entries = rng.random_range(1..=MAX_DIRECTORY_ENTRIES.min(5)); // Limit directory size for testing
let mut entries = Vec::with_capacity(num_entries);
for _ in 0..num_entries {
if rng.random_bool(0.7) {
// 70% chance of creating a file (Chunk/Big)
let file_hash = generate_random_file_node(storage)?;
let entry = DirectoryEntry {
filename: generate_random_filename(),
content_hash: file_hash,
};
entries.push(entry);
} else if current_depth < max_depth {
// 30% chance of creating a subdirectory
let dir_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
// Create a basic directory entry name
let mut filename_bytes = [0; 32];
let subdir_name = format!("dir_{}", current_depth);
filename_bytes[..subdir_name.len()].copy_from_slice(subdir_name.as_bytes());
let entry = DirectoryEntry {
filename: filename_bytes,
content_hash: dir_hash,
};
entries.push(entry);
}
}
let node = MerkleNode::Directory(DirectoryNode::new(entries)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a BigDirectory Node (internal directory structure)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(4)); // Limit children count
let mut children = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Directory or BigDirectory
let child_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
children.push(child_hash);
}
let node = MerkleNode::BigDirectory(BigDirectoryNode::new(children)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}*/
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct ChunkNode { pub struct ChunkNode {
pub data: Vec<u8>, pub data: Vec<u8>,
@@ -208,7 +75,7 @@ impl ChunkNode {
// Helper struct // Helper struct
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct DirectoryEntry { pub struct DirectoryEntry {
pub filename: Vec<u8>, pub filename: [u8; FILENAME_HASH_SIZE],
pub content_hash: NodeHash, pub content_hash: NodeHash,
} }
@@ -240,7 +107,7 @@ pub struct BigNode {
} }
impl BigNode { impl BigNode {
/*pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> { pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len(); let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN { if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!( return Err(format!(
@@ -249,17 +116,17 @@ impl BigNode {
)); ));
} }
Ok(BigNode { children_hashes }) Ok(BigNode { children_hashes })
}*/ }
} }
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct BigDirectoryNode { pub struct BigDirectoryNode {
//pub children_hashes: Vec<NodeHash>, pub children_hashes: Vec<NodeHash>,
pub children_hashes: Vec<DirectoryEntry>, // pub children_hashes: Vec<DirectoryEntry>,
} }
impl BigDirectoryNode { impl BigDirectoryNode {
/*pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> { pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len(); let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN { if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!( return Err(format!(
@@ -268,14 +135,6 @@ impl BigDirectoryNode {
)); ));
} }
Ok(BigDirectoryNode { children_hashes }) Ok(BigDirectoryNode { children_hashes })
}*/
pub fn new(entries: Vec<DirectoryEntry>) -> Result<Self, String> {
if entries.len() > MAX_DIRECTORY_ENTRIES {
return Err(format!("Directory exceeds {} bytes", entries.len()));
}
Ok(BigDirectoryNode {
children_hashes: entries,
})
} }
} }
@@ -310,73 +169,10 @@ impl MerkleNode {
} }
MerkleNode::BigDirectory(node) => { MerkleNode::BigDirectory(node) => {
for hash in &node.children_hashes { for hash in &node.children_hashes {
bytes.extend_from_slice(&hash.content_hash); bytes.extend_from_slice(hash);
} }
} }
} }
bytes bytes
} }
/*pub fn generate_random_tree(
max_depth: u32,
) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new();
// Start tree generation from the root directory at depth 0
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage))
}*/
/*pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
let mut res = HashMap::new();
let node1 = MerkleNode::Chunk(ChunkNode::new_random());
let hash1 = hash(&node1.serialize());
let node2 = MerkleNode::Chunk(ChunkNode::new_random());
let hash2 = hash(&node2.serialize());
res.insert(hash1, node1);
res.insert(hash2, node2);
let node3 = MerkleNode::Chunk(ChunkNode::new_random());
let hash3 = hash(&node3.serialize());
res.insert(hash3, node3);
let dir1 = MerkleNode::Directory(DirectoryNode {
entries: [DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash3,
}]
.to_vec(),
});
let hash_dir1 = hash(&dir1.serialize());
res.insert(hash_dir1, dir1);
let root = MerkleNode::Directory(DirectoryNode {
entries: [
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash1,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash2,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash_dir1,
},
]
.to_vec(),
});
let root_hash = hash(&root.serialize());
res.insert(root_hash, root);
(root_hash, res)
}*/
} }

View File

@@ -0,0 +1,200 @@
use crate::data::*;
use rand::{Rng, rng};
use std::collections::HashMap;
use std::hash::{DefaultHasher, Hash, Hasher};
fn hash(data: &[u8]) -> NodeHash {
let mut hasher = DefaultHasher::new();
data.hash(&mut hasher);
let hash_u64 = hasher.finish();
let mut hash_array = [0u8; FILENAME_HASH_SIZE];
// Simple way to spread a 64-bit hash across 32 bytes for a unique-ish ID
for i in 0..8 {
hash_array[i] = (hash_u64 >> (i * 8)) as u8;
}
hash_array // The rest remains 0, satisfying the 32-byte requirement
}
fn generate_random_filename() -> [u8; FILENAME_HASH_SIZE] {
let mut rng = rand::rng();
let mut filename_bytes = [0; FILENAME_HASH_SIZE];
// Generate a random length for the base name
let name_len = rng.random_range(5..21);
// Generate random alphanumeric characters
for i in 0..name_len {
let char_code = rng.random_range(97..123); // 'a' through 'z'
if i < FILENAME_HASH_SIZE {
filename_bytes[i] = char_code as u8;
}
}
// Append a common extension
let ext = if rng.random_bool(0.5) { ".txt" } else { ".dat" };
let ext_bytes = ext.as_bytes();
let start_index = name_len.min(FILENAME_HASH_SIZE - ext_bytes.len());
if start_index < FILENAME_HASH_SIZE {
filename_bytes[start_index..(start_index + ext_bytes.len())].copy_from_slice(ext_bytes);
}
filename_bytes
}
fn generate_random_file_node(
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let is_big = rng.random_bool(0.2); // 20% chance of being a big file
if !is_big {
// Generate a simple Chunk Node
let node = MerkleNode::Chunk(ChunkNode::new_random());
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a Big Node (a file composed of chunks)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(8)); // Limit complexity
let mut children_hashes = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Chunk or Big; for simplicity, we only generate Chunk children here.
let chunk_node = MerkleNode::Chunk(ChunkNode::new_random());
let chunk_hash = hash(&chunk_node.serialize());
storage.insert(chunk_hash, chunk_node);
children_hashes.push(chunk_hash);
}
let node = MerkleNode::Big(BigNode::new(children_hashes)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
fn generate_random_directory_node(
depth: u32,
max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let current_depth = depth + 1;
let is_big_dir = rng.random_bool(0.3) && current_depth < max_depth;
if !is_big_dir || current_depth >= max_depth {
// Generate a simple Directory Node (leaf level directory)
let num_entries = rng.random_range(1..=MAX_DIRECTORY_ENTRIES.min(5)); // Limit directory size for testing
let mut entries = Vec::with_capacity(num_entries);
for _ in 0..num_entries {
if rng.random_bool(0.7) {
// 70% chance of creating a file (Chunk/Big)
let file_hash = generate_random_file_node(storage)?;
let entry = DirectoryEntry {
filename: generate_random_filename(),
content_hash: file_hash,
};
entries.push(entry);
} else if current_depth < max_depth {
// 30% chance of creating a subdirectory
let dir_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
// Create a basic directory entry name
let mut filename_bytes = [0; 32];
let subdir_name = format!("dir_{}", current_depth);
filename_bytes[..subdir_name.len()].copy_from_slice(subdir_name.as_bytes());
let entry = DirectoryEntry {
filename: filename_bytes,
content_hash: dir_hash,
};
entries.push(entry);
}
}
let node = MerkleNode::Directory(DirectoryNode::new(entries)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a BigDirectory Node (internal directory structure)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(4)); // Limit children count
let mut children = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Directory or BigDirectory
let child_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
children.push(child_hash);
}
let node = MerkleNode::BigDirectory(BigDirectoryNode::new(children)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
pub fn generate_random_tree(
max_depth: u32,
) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new();
// Start tree generation from the root directory at depth 0
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage))
}
pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
let mut res = HashMap::new();
let node1 = MerkleNode::Chunk(ChunkNode::new_random());
let hash1 = hash(&node1.serialize());
let node2 = MerkleNode::Chunk(ChunkNode::new_random());
let hash2 = hash(&node2.serialize());
res.insert(hash1, node1);
res.insert(hash2, node2);
let node3 = MerkleNode::Chunk(ChunkNode::new_random());
let hash3 = hash(&node3.serialize());
res.insert(hash3, node3);
let dir1 = MerkleNode::Directory(DirectoryNode {
entries: [DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash3,
}]
.to_vec(),
});
let hash_dir1 = hash(&dir1.serialize());
res.insert(hash_dir1, dir1);
let root = MerkleNode::Directory(DirectoryNode {
entries: [
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash1,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash2,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash_dir1,
},
]
.to_vec(),
});
let root_hash = hash(&root.serialize());
res.insert(root_hash, root);
(root_hash, res)
}

View File

@@ -6,28 +6,20 @@ const DIRECTORY: u8 = 1;
const BIG: u8 = 2; const BIG: u8 = 2;
const BIGDIRECTORY: u8 = 3; const BIGDIRECTORY: u8 = 3;
fn parse_received_datum(recevied_datum: Vec<u8>, datum_length: usize, mut tree: MerkleTree) { pub fn parse_received_datum(
if datum_length > recevied_datum.len() { recevied_datum: Vec<u8>,
return; datum_length: usize,
} ) -> Option<([u8; 32], MerkleNode)> {
if datum_length < 32 + 64 {
return;
}
let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error"); let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error");
let sigstart = datum_length - 64; let sigstart = datum_length - 64;
let value = &recevied_datum[32..sigstart]; let value = &recevied_datum[32..sigstart];
let value_slice = value.to_vec(); let value_slice = value.to_vec();
let signature: [u8; 32] = recevied_datum[sigstart..datum_length]
.try_into()
.expect("Taille incorrecte");
let datum_type = value_slice[0]; let datum_type = value_slice[0];
match datum_type { match datum_type {
CHUNK => { CHUNK => Some((
tree.data.insert( hash_name,
hash_name, MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
MerkleNode::Chunk(crate::ChunkNode { data: value_slice }), )),
);
}
DIRECTORY => { DIRECTORY => {
let nb_entries = value_slice[1]; let nb_entries = value_slice[1];
let mut dir_entries = Vec::new(); let mut dir_entries = Vec::new();
@@ -39,30 +31,35 @@ fn parse_received_datum(recevied_datum: Vec<u8>, datum_length: usize, mut tree:
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]); hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request // envoyer un datum request
dir_entries.push(DirectoryEntry { dir_entries.push(DirectoryEntry {
filename: name.to_vec(), filename: name.try_into().expect("incorrect size"),
content_hash: hash, content_hash: hash,
}); });
} }
let current = DirectoryNode::new(dir_entries); let current = DirectoryNode::new(dir_entries);
match current { match current {
Ok(current_node) => { Ok(current_node) => Some((hash_name, MerkleNode::Directory(current_node))),
tree.data
.insert(hash_name, MerkleNode::Directory(current_node));
}
Err(e) => { Err(e) => {
println!("{}", e); println!("{}", e);
None
} }
} }
} }
BIG => { BIG => {
let chlidren: Vec<NodeHash> = Vec::new(); let chlidren: Vec<NodeHash> = Vec::new();
Some((
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: chlidren,
}),
))
/*let chlidren: Vec<NodeHash> = Vec::new();
tree.data.insert( tree.data.insert(
hash_name, hash_name,
MerkleNode::Big(crate::BigNode { MerkleNode::Big(crate::BigNode {
children_hashes: chlidren, children_hashes: chlidren,
}), }),
); );*/
} }
BIGDIRECTORY => { BIGDIRECTORY => {
let nb_entries = value_slice[1]; let nb_entries = value_slice[1];
@@ -74,23 +71,18 @@ fn parse_received_datum(recevied_datum: Vec<u8>, datum_length: usize, mut tree:
let mut hash = [0u8; 32]; let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]); hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request // envoyer un datum request
dir_entries.push(DirectoryEntry { dir_entries.push(hash);
filename: name.to_vec(),
content_hash: hash,
});
} }
let current = BigDirectoryNode::new(dir_entries); let current = BigDirectoryNode::new(dir_entries);
match current { match current {
Ok(current_node) => { Ok(current_node) => Some((hash_name, MerkleNode::BigDirectory(current_node))),
tree.data
.insert(hash_name, MerkleNode::BigDirectory(current_node));
}
Err(e) => { Err(e) => {
println!("{}", e); println!("{}", e);
None
} }
} }
} }
_ => {} _ => None,
} }
} }

View File

@@ -0,0 +1,26 @@
use std::fmt;
#[derive(Debug)]
pub enum FetchSocketAddressError {
NoIPV4Address,
NoRegisteredAddresses,
NoResponseFromUser,
ClientError(String),
}
impl fmt::Display for FetchSocketAddressError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
FetchSocketAddressError::NoIPV4Address => write!(f, "No IPv4 Address registered."),
FetchSocketAddressError::NoRegisteredAddresses => {
write!(f, "No Registered Addresses found.")
}
FetchSocketAddressError::NoResponseFromUser => {
write!(f, "No Response from user after contact.")
}
FetchSocketAddressError::ClientError(error) => {
write!(f, "Client error : {}", error)
}
}
}
}

View File

@@ -1,27 +1,34 @@
mod cryptographic_signature; mod cryptographic_signature;
mod data; mod data;
mod datum_generation;
mod datum_parsing; mod datum_parsing;
mod fetchsocketaddresserror;
mod message_handling; mod message_handling;
mod messages_channels; mod messages_channels;
mod messages_structure; mod messages_structure;
mod peers_refresh; mod peers_refresh;
mod registration; mod registration;
mod server_communication; mod server_communication;
mod threads_handling;
mod timestamp;
use crate::fetchsocketaddresserror::FetchSocketAddressError;
use crate::peers_refresh::*;
use crate::timestamp::Timestamp;
use crate::{ use crate::{
cryptographic_signature::CryptographicSignature, cryptographic_signature::CryptographicSignature,
message_handling::EventType, message_handling::EventType,
messages_channels::{MultipleSenders, start_receving_thread}, messages_channels::{MultipleSenders, start_receving_thread, start_retry_thread},
messages_structure::{ messages_structure::{NATTRAVERSALREQUEST, PING, ROOTREQUEST, construct_message},
NATTRAVERSALREQUEST, NATTRAVERSALREQUEST2, ROOTREQUEST, construct_message,
},
peers_refresh::HandshakeHistory, peers_refresh::HandshakeHistory,
registration::{parse_addresses, perform_handshake, register_with_the_server}, registration::{parse_addresses, perform_handshake, register_with_the_server},
server_communication::{generate_id, get_peer_list}, server_communication::{generate_id, get_peer_list},
threads_handling::Worker,
}; };
use std::{ use std::{
io::Error, io::Error,
net::{IpAddr, Ipv4Addr, UdpSocket}, net::{IpAddr, Ipv4Addr, UdpSocket},
time::Duration,
}; };
use std::{ use std::{
net::SocketAddr, net::SocketAddr,
@@ -32,13 +39,17 @@ pub struct P2PSharedData {
shared_socket: Arc<UdpSocket>, shared_socket: Arc<UdpSocket>,
shared_cryptopair: Arc<CryptographicSignature>, shared_cryptopair: Arc<CryptographicSignature>,
shared_messageslist: Arc<Mutex<HashMap<i32, EventType>>>, shared_messageslist: Arc<Mutex<HashMap<i32, EventType>>>,
shared_messagesreceived: Arc<Mutex<HashMap<String, (EventType, Timestamp)>>>,
shared_senders: Arc<MultipleSenders>, shared_senders: Arc<MultipleSenders>,
server_name: Arc<Mutex<String>>, server_name: Arc<Mutex<String>>,
server_address: Arc<Mutex<String>>,
handshake_peers: Arc<HandshakeHistory>, handshake_peers: Arc<HandshakeHistory>,
threads: Vec<Worker>,
} }
use bytes::Bytes; use bytes::Bytes;
use p256::pkcs8::der::pem::Base64Encoder; use reqwest::Client;
use tokio::time::sleep;
impl P2PSharedData { impl P2PSharedData {
pub fn new( pub fn new(
@@ -46,24 +57,33 @@ impl P2PSharedData {
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
) -> Result<P2PSharedData, Error> { ) -> Result<P2PSharedData, Error> {
let messages_list = HashMap::<i32, EventType>::new(); let messages_list = HashMap::<i32, EventType>::new();
let messagesrecv_list = HashMap::<String, (EventType, Timestamp)>::new();
let username = String::from(username); let username = String::from(username);
let crypto_pair = CryptographicSignature::new(username); let crypto_pair = CryptographicSignature::new(username);
let socket = UdpSocket::bind("0.0.0.0:0")?; let socket = UdpSocket::bind("0.0.0.0:0")?;
let shared_socket = Arc::new(socket); let shared_socket = Arc::new(socket);
let shared_cryptopair = Arc::new(crypto_pair); let shared_cryptopair = Arc::new(crypto_pair);
let shared_messageslist = Arc::new(Mutex::new(messages_list)); let shared_messageslist = Arc::new(Mutex::new(messages_list));
let shared_messagesreceived = Arc::new(Mutex::new(messagesrecv_list));
let senders = MultipleSenders::new(1, &shared_socket, cmd_tx); let mut threads = Vec::new();
let senders = MultipleSenders::new(1, &shared_socket, cmd_tx, &mut threads);
let shared_senders = Arc::new(senders); let shared_senders = Arc::new(senders);
let server_name = Arc::new(Mutex::new("".to_string())); let server_name = Arc::new(Mutex::new("".to_string()));
let server_address = Arc::new(Mutex::new("".to_string()));
let handhsake_peers = Arc::new(HandshakeHistory::new()); let handhsake_peers = Arc::new(HandshakeHistory::new());
Ok(P2PSharedData { Ok(P2PSharedData {
shared_socket: shared_socket, shared_socket: shared_socket,
shared_cryptopair: shared_cryptopair, shared_cryptopair: shared_cryptopair,
shared_messageslist: shared_messageslist, shared_messageslist: shared_messageslist,
shared_messagesreceived: shared_messagesreceived,
shared_senders: shared_senders, shared_senders: shared_senders,
server_name: server_name, server_name: server_name,
server_address: server_address,
handshake_peers: handhsake_peers, handshake_peers: handhsake_peers,
threads,
}) })
} }
pub fn socket(&self) -> Arc<UdpSocket> { pub fn socket(&self) -> Arc<UdpSocket> {
@@ -76,32 +96,52 @@ impl P2PSharedData {
pub fn messages_list(&self) -> Arc<Mutex<HashMap<i32, EventType>>> { pub fn messages_list(&self) -> Arc<Mutex<HashMap<i32, EventType>>> {
self.shared_messageslist.clone() self.shared_messageslist.clone()
} }
pub fn messages_received(&self) -> Arc<Mutex<HashMap<String, (EventType, Timestamp)>>> {
self.shared_messagesreceived.clone()
}
pub fn servername(&self) -> String { pub fn servername(&self) -> String {
let guard = self.server_name.lock().unwrap(); let guard = {
let maybe_sn = self.server_name.lock().unwrap();
maybe_sn.clone()
};
guard.to_string()
}
pub fn serveraddress(&self) -> String {
let guard = {
let maybe_sn = self.server_address.lock().unwrap();
maybe_sn.clone()
};
guard.to_string() guard.to_string()
} }
pub fn set_servername(&self, new: String) { pub fn set_servername(&self, new: String) {
let mut guard = self.server_name.lock().unwrap(); let mut guard = self.server_name.lock().unwrap();
*guard = new *guard = new
} }
pub fn set_serveraddress(&self, new: String) {
let mut guard = self.server_address.lock().unwrap();
*guard = new
}
pub fn senders(&self) -> Arc<MultipleSenders> { pub fn senders(&self) -> Arc<MultipleSenders> {
self.shared_senders.clone() self.shared_senders.clone()
} }
pub fn socket_ref(&self) -> &UdpSocket { pub fn socket_ref(&self) -> &UdpSocket {
&*self.shared_socket &*self.shared_socket
} }
pub fn handshakes(&self) -> Arc<HandshakeHistory> {
self.handshake_peers.clone()
}
pub fn cryptopair_ref(&self) -> &CryptographicSignature { pub fn cryptopair_ref(&self) -> &CryptographicSignature {
&*self.shared_cryptopair &*self.shared_cryptopair
} }
pub fn handshake_ref(&self) -> &HandshakeHistory {
&*self.handshake_peers
}
pub fn messages_list_ref(&self) -> &Mutex<HashMap<i32, EventType>> { pub fn messages_list_ref(&self) -> &Mutex<HashMap<i32, EventType>> {
&*self.shared_messageslist &*self.shared_messageslist
} }
pub fn messages_received_ref(&self) -> &Mutex<HashMap<String, (EventType, Timestamp)>> {
&*self.shared_messagesreceived
}
pub fn senders_ref(&self) -> &MultipleSenders { pub fn senders_ref(&self) -> &MultipleSenders {
&*self.shared_senders &*self.shared_senders
} }
@@ -110,6 +150,15 @@ impl P2PSharedData {
let mut map = self.shared_messageslist.lock().unwrap(); let mut map = self.shared_messageslist.lock().unwrap();
map.insert(id, evt); map.insert(id, evt);
} }
pub fn threads(&mut self) -> &mut Vec<Worker> {
&mut self.threads
}
pub fn close_threads(&mut self) {
for w in self.threads.drain(..) {
w.stop();
}
}
} }
/// Messages sent to the Network thread by the GUI. /// Messages sent to the Network thread by the GUI.
@@ -118,7 +167,7 @@ pub enum NetworkCommand {
ServerHandshake(String, String), // ServerName ServerHandshake(String, String), // ServerName
FetchPeerList(String), // ServerIP FetchPeerList(String), // ServerIP
RegisterAsPeer(String), RegisterAsPeer(String),
Ping(String), Ping(String, String),
NatTraversal(String, String), NatTraversal(String, String),
ConnectPeer((String, bool)), // IP:PORT ConnectPeer((String, bool)), // IP:PORT
RequestFileTree(String), // peer_id RequestFileTree(String), // peer_id
@@ -137,9 +186,10 @@ pub enum NetworkEvent {
ConnectedHandshake(), ConnectedHandshake(),
Disconnected(), Disconnected(),
Error(String), Error(String),
Success(String),
PeerConnected(String), PeerConnected(String),
PeerListUpdated(Vec<(String, bool)>), PeerListUpdated(Vec<(String, bool)>),
FileTreeReceived(String, Vec<MerkleNode>), // peer_id, content FileTreeReceived([u8; 32], MerkleNode), // peer_id, content
DataReceived(String, MerkleNode), DataReceived(String, MerkleNode),
FileTreeRootReceived(String, NodeHash), FileTreeRootReceived(String, NodeHash),
HandshakeFailed(), HandshakeFailed(),
@@ -176,8 +226,6 @@ pub fn start_p2p_executor(
// Use tokio to spawn the asynchronous networking logic // Use tokio to spawn the asynchronous networking logic
tokio::task::spawn(async move { tokio::task::spawn(async move {
// P2P/Networking Setup goes here // P2P/Networking Setup goes here
let handshake_history = Arc::new(Mutex::new(HandshakeHistory::new()));
let handshake_clone = handshake_history.clone();
println!("Network executor started."); println!("Network executor started.");
@@ -188,8 +236,21 @@ pub fn start_p2p_executor(
match cmd { match cmd {
NetworkCommand::ServerHandshake(username, ip) => { NetworkCommand::ServerHandshake(username, ip) => {
println!("server handshake called"); println!("server handshake called");
if let Some(sd) = shared_data.as_ref() { if let Some(sd) = shared_data.as_mut() {
start_receving_thread(sd, event_tx.clone(), &handshake_clone); start_receving_thread(sd, event_tx.clone(), sd.handshakes());
start_retry_thread(
sd.senders(),
4,
sd.messages_list(),
sd.threads().as_mut(),
);
update_handshake(
sd.senders(),
sd.cryptopair(),
sd.messages_list(),
sd.handshake_peers.get_username_peerinfo_map(),
);
let res = let res =
perform_handshake(&sd, username, ip, event_tx.clone(), true).await; perform_handshake(&sd, username, ip, event_tx.clone(), true).await;
} else { } else {
@@ -209,30 +270,35 @@ pub fn start_p2p_executor(
NetworkCommand::Discover(username, hash, ip) => { NetworkCommand::Discover(username, hash, ip) => {
// envoie un handshake au peer, puis un root request // envoie un handshake au peer, puis un root request
if let Some(sd) = shared_data.as_ref() { if let Some(sd) = shared_data.as_ref() {
let res = { let res = sd.handshake_peers.get_peer_info_username(username.clone());
let m = handshake_clone.lock().unwrap();
m.get_peer_info_username(username.clone()).cloned()
};
match res { match res {
Some(peerinfo) => { Some(peerinfo) => {
let id = generate_id();
// envoyer un root request // envoyer un root request
let rootrequest = construct_message( let rootrequest = construct_message(
ROOTREQUEST, ROOTREQUEST,
Vec::new(), Vec::new(),
generate_id(), id,
sd.cryptopair_ref(), sd.cryptopair_ref(),
); );
println!("matching");
match rootrequest { match rootrequest {
None => {} None => {}
Some(resp_msg) => { Some(resp_msg) => {
sd.add_message(id, EventType::RootRequest);
println!("msg_sent:{:?}", resp_msg); println!("msg_sent:{:?}", resp_msg);
sd.senders_ref().send_via( sd.senders_ref().add_message_to_retry_queue(
0, resp_msg.clone(),
peerinfo.ip.to_string(),
false,
);
sd.senders_ref().send_dispatch(
resp_msg, resp_msg,
peerinfo.ip.to_string(), peerinfo.ip.to_string(),
false, false,
sd.messages_list_ref(), sd.messages_list(),
); );
} }
} }
@@ -302,6 +368,7 @@ pub fn start_p2p_executor(
}*/ }*/
} }
NetworkCommand::FetchPeerList(ip) => { NetworkCommand::FetchPeerList(ip) => {
println!("[Network] FetchPeerList() called");
if ip == "" { if ip == "" {
let res = event_tx.send(NetworkEvent::Error( let res = event_tx.send(NetworkEvent::Error(
"Not registered to any server".to_string(), "Not registered to any server".to_string(),
@@ -331,19 +398,65 @@ pub fn start_p2p_executor(
Err(e) => println!("error"), Err(e) => println!("error"),
} }
} }
println!("[Network] FetchPeerList() called");
} }
NetworkCommand::RegisterAsPeer(_) => { NetworkCommand::RegisterAsPeer(_) => {
println!("[Network] RegisterAsPeer() called"); println!("[Network] RegisterAsPeer() called");
} }
NetworkCommand::Ping(String) => { NetworkCommand::Ping(str, ip) => {
println!("[Network] Ping() called"); println!("[Network] Ping({}) called", str);
if let Some(sd) = shared_data.as_ref() {
let id = generate_id();
sd.add_message(id, EventType::Ping);
let pingrequest =
construct_message(PING, Vec::new(), id, sd.cryptopair_ref());
let peer_address =
get_socket_address(str, ip, shared_data.as_ref()).await;
match peer_address {
Ok(addr) => {
//if let Some(ping) = pingrequest {
// sd.senders_ref().add_message_to_retry_queue(
// ping.clone(),
// addr.to_string(),
// false,
// );
// sd.senders_ref().send_dispatch(
// ping,
// addr.to_string(),
// false,
// sd.messages_list(),
// );
//}
match event_tx.send(NetworkEvent::Success(format!(
"Successfully sent ping message to {}.",
addr.to_string()
))) {
Ok(_) => {}
Err(e) => {
eprintln!("NetworkEvent error : {}", e);
}
};
}
Err(err_msg) => {
match event_tx.send(NetworkEvent::Error(err_msg.to_string())) {
Ok(_) => {}
Err(e) => {
eprintln!("NetworkEvent error : {}", e);
}
}
}
}
}
} }
NetworkCommand::Disconnect() => { NetworkCommand::Disconnect() => {
if let Some(sd) = shared_data.as_ref() { if let Some(sd) = shared_data.as_ref() {
println!("Disconnecting: {}", &sd.cryptopair().username); println!("Disconnecting: {}", &sd.cryptopair().username);
shared_data = None; shared_data = None;
let res = event_tx.send(NetworkEvent::Disconnected()); match event_tx.send(NetworkEvent::Disconnected()) {
Ok(_) => {}
Err(e) => {
eprintln!("NetworkEvent error : {}", e);
}
}
} else { } else {
println!("no p2p data"); println!("no p2p data");
} }
@@ -359,44 +472,44 @@ pub fn start_p2p_executor(
if let Some(sd) = shared_data.as_ref() { if let Some(sd) = shared_data.as_ref() {
println!("username:{}, ip:{}", username, ip); println!("username:{}, ip:{}", username, ip);
// user server to send nattraversal request // user server to send nattraversal request
let server_addr_query = let server_addr = sd.serveraddress();
get_socket_address(sd.servername().clone(), ip.clone()); let peer_addr_query = get_socket_address(
let peer_addr_query = get_socket_address(username.clone(), ip.clone()); username.clone(),
ip.clone(),
shared_data.as_ref(),
);
match server_addr_query.await { match peer_addr_query.await {
Some(server_addr) => match peer_addr_query.await { Ok(peer_addr) => {
Some(peer_addr) => { let payload = socket_addr_to_vec(peer_addr);
let payload = socket_addr_to_vec(server_addr);
print!("{:?}", payload.clone()); print!("{:?}", payload.clone());
let natreq = construct_message( let id = generate_id();
NATTRAVERSALREQUEST, let natreq = construct_message(
server_addr.to_string().into_bytes(), NATTRAVERSALREQUEST,
generate_id(), payload.clone(),
&sd.cryptopair(), id.clone(),
); &sd.cryptopair(),
);
sd.senders_ref().send_via( sd.add_message(id, EventType::NatTraversal);
0, sd.senders_ref().send_dispatch(
natreq.expect( natreq.expect(
"couldnt construct message nattraversalrequest2", "couldnt construct message nattraversalrequest2",
), ),
server_addr.to_string(), server_addr.to_string(),
false, false,
sd.messages_list_ref(), sd.messages_list(),
); );
}
Err(err_msg) => {
match event_tx.send(NetworkEvent::Error(err_msg.to_string())) {
Ok(_) => {}
Err(e) => {
eprintln!("NetworkEvent error : {}", e);
}
} }
None => {
let err_msg = format!("failed to retreive socket address")
.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
},
None => {
let err_msg =
format!("failed to retreive socket address").to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
} }
} }
} }
@@ -410,7 +523,7 @@ pub fn start_p2p_executor(
// event_tx.send(NetworkEvent::PeerConnected("NewPeerID".to_string())).unwrap(); // event_tx.send(NetworkEvent::PeerConnected("NewPeerID".to_string())).unwrap();
// Avoid spinning too fast // Avoid spinning too fast
tokio::time::sleep(std::time::Duration::from_millis(50)).await; sleep(std::time::Duration::from_millis(50)).await;
} }
}) })
} }
@@ -440,16 +553,134 @@ fn parse_pack(s: &str) -> Option<[u8; 6]> {
]) ])
} }
async fn quick_ping(addr: &SocketAddr, timeout_ms: u64, sd: &P2PSharedData) -> bool {
let id = generate_id();
let pingreq = construct_message(PING, Vec::new(), id, &sd.shared_cryptopair);
if let Some(ping) = pingreq {
sd.add_message(id, EventType::Ping);
sd.senders_ref()
.send_dispatch(ping, addr.to_string(), false, sd.messages_list());
}
sleep(Duration::from_millis(timeout_ms)).await;
let msg_list = sd.messages_list_ref().lock().expect("yooo");
let res = !msg_list.contains_key(&id);
for (id, evt) in msg_list.iter() {
println!("id : {}, evt : {}", id, evt.to_string());
}
println!("message list doesnt contain key? {}", res);
res
}
/// ///
/// sends a get request to the server to get the socket address of the given peer /// sends a get request to the server to get the socket address of the given peer
/// ///
pub async fn get_socket_address(username: String, ip: String) -> Option<SocketAddr> { pub async fn get_socket_address(
let client = reqwest::Client::new(); username: String,
ip: String,
shared_data: Option<&P2PSharedData>,
) -> Result<SocketAddr, FetchSocketAddressError> {
let sd = shared_data.expect("No shared data");
let client = match Client::builder().timeout(Duration::from_secs(5)).build() {
Ok(c) => c,
Err(e) => {
return Err(FetchSocketAddressError::ClientError(e.to_string()));
}
};
let uri = format!("{}/peers/{}/addresses", ip, username);
let res = match client.get(&uri).send().await {
Ok(r) => r,
Err(e) => return Err(FetchSocketAddressError::ClientError(e.to_string())),
};
if res.status().is_success() {
println!("Successfully retrieved the addresses. {}", res.status());
} else {
eprintln!(
"Failed to get the peers addresses from the server. Status: {}",
res.status()
);
}
let body = match res.bytes().await {
Ok(b) => b,
Err(e) => {
return Err(FetchSocketAddressError::ClientError(e.to_string()));
}
};
let s = match String::from_utf8(body.to_vec()) {
Ok(st) => st,
Err(e) => {
return Err(FetchSocketAddressError::ClientError(e.to_string()));
}
};
let addresses = parse_addresses(&s); // assumes parse_addresses: &str -> Vec<SocketAddr>
if addresses.is_empty() {
return Err(FetchSocketAddressError::NoRegisteredAddresses);
} else if !addresses.iter().any(|a| matches!(a, SocketAddr::V4(_))) {
return Err(FetchSocketAddressError::NoIPV4Address);
}
for addr in addresses {
println!("trying address : {}", addr);
if quick_ping(&addr, 5000, sd).await {
return Ok(addr);
}
let payload = socket_addr_to_vec(addr);
let id = generate_id();
let natreq = construct_message(NATTRAVERSALREQUEST, payload.clone(), id, &sd.cryptopair());
sd.add_message(id, EventType::NatTraversal);
sd.senders_ref().send_dispatch(
natreq.expect("couldnt construct message nattraversalrequest2"),
sd.serveraddress().to_string(),
false,
sd.messages_list(),
);
sleep(Duration::from_millis(5000)).await;
let maybe_entry = {
let guard = sd.messages_received_ref().lock().unwrap();
guard.clone()
}; // guard dropped
for (id, (evt, time)) in maybe_entry.iter() {
println!("{} : {} at {}", id, evt.to_string(), time.to_string());
if id.eq(&addr.to_string()) && Timestamp::now().diff(time) < 10 {
println!("received message from address, returning said address..");
return Ok(addr);
}
}
if quick_ping(&addr, 15000, sd).await {
return Ok(addr);
}
}
Err(FetchSocketAddressError::NoResponseFromUser)
}
pub async fn get_server_address(username: String, ip: String) -> Option<SocketAddr> {
let client = Client::builder()
.timeout(Duration::from_secs(5))
.build()
.expect("cannot create client");
let uri = format!("{}/peers/{}/addresses", ip, username); let uri = format!("{}/peers/{}/addresses", ip, username);
let res = client.get(uri).send().await.expect("couldnt get response"); let res = client.get(uri).send().await.expect("couldnt get response");
if res.status().is_success() { if res.status().is_success() {
println!("Successfully retreived the addresses."); println!("Successfully retreived the addresses. {}", res.status());
} else { } else {
eprintln!( eprintln!(
"Failed to get the peers addresses from the server. Status: {}", "Failed to get the peers addresses from the server. Status: {}",
@@ -461,31 +692,12 @@ pub async fn get_socket_address(username: String, ip: String) -> Option<SocketAd
match String::from_utf8(body.to_vec()) { match String::from_utf8(body.to_vec()) {
Ok(s) => { Ok(s) => {
let addresses = parse_addresses(&s); let addresses = parse_addresses(&s);
addresses.iter().copied().find(|a| a.is_ipv4()) if let Some(first) = addresses.first() {
Some(first.clone())
} else {
None
}
} }
Err(_) => None, Err(_) => None,
} }
} }
pub async fn get_possible_socket_address(username: String, ip: String) -> Vec<SocketAddr> {
let client = reqwest::Client::new();
let uri = format!("{}/peers/{}/addresses", ip, username);
let res = client.get(uri).send().await.expect("couldnt get response");
if res.status().is_success() {
println!("Successfully retreived the addresses.");
} else {
eprintln!(
"Failed to get the peers addresses from the server. Status: {}",
res.status()
);
}
let body: Bytes = res.bytes().await.expect("couldnt get bytes");
match String::from_utf8(body.to_vec()) {
Ok(s) => {
let addresses = parse_addresses(&s);
addresses.iter().copied().filter(|a| a.is_ipv4()).collect()
}
Err(_) => Vec::new(),
}
}

View File

@@ -1,22 +1,63 @@
use tokio::sync::oneshot;
use crate::{ use crate::{
NetworkEvent, NodeHash, NetworkEvent, NodeHash, P2PSharedData,
cryptographic_signature::{ cryptographic_signature::{
CryptographicSignature, get_peer_key, sign_message, verify_signature, CryptographicSignature, get_peer_key, sign_message, verify_signature,
}, },
datum_parsing::parse_received_datum,
messages_channels::MultipleSenders, messages_channels::MultipleSenders,
messages_structure::construct_message, messages_structure::construct_message,
peers_refresh::HandshakeHistory, peers_refresh::HandshakeHistory,
registration, registration,
server_communication::generate_id, server_communication::generate_id,
timestamp::Timestamp,
};
use std::{
collections::HashMap,
default,
net::{Ipv4Addr, SocketAddr},
}; };
use std::{collections::HashMap, net::SocketAddr};
use std::{ use std::{
net::IpAddr, net::IpAddr,
sync::{Arc, Mutex}, sync::{Arc, Mutex},
}; };
// Types of messages that await for a response
#[derive(Debug, Clone)]
pub enum EventType { pub enum EventType {
SendRootRequest, HelloThenRootRequest,
Hello,
RootRequest,
Ping,
NatTraversal,
DatumRequest,
Unknown,
}
impl EventType {
pub fn to_string(&self) -> String {
match self {
EventType::HelloThenRootRequest => "HelloThenRootRequest".to_owned(),
EventType::Hello => "Hello".to_owned(),
EventType::RootRequest => "RootRequest".to_owned(),
EventType::Ping => "Ping".to_owned(),
EventType::NatTraversal => "NatTraversal".to_owned(),
EventType::DatumRequest => "DatumRequest".to_owned(),
EventType::Unknown => "Unknown".to_owned(),
}
}
pub fn from_msgtype(msgtype: u8) -> EventType {
match msgtype {
PING => EventType::Ping,
HELLO => EventType::Hello,
ROOTREQUEST => EventType::RootRequest,
NATTRAVERSALREQUEST => EventType::NatTraversal,
DATUMREQUEST => EventType::DatumRequest,
_ => EventType::Unknown,
}
}
} }
const ID: usize = 4; const ID: usize = 4;
@@ -25,7 +66,7 @@ const LENGTH: usize = 7;
const EXTENSIONS: usize = 4; const EXTENSIONS: usize = 4;
const SIGNATURE: usize = 64; const SIGNATURE: usize = 64;
const PING: u8 = 0; pub const PING: u8 = 0;
const OK: u8 = 128; const OK: u8 = 128;
const ERROR: u8 = 129; const ERROR: u8 = 129;
const HELLO: u8 = 1; const HELLO: u8 = 1;
@@ -40,6 +81,7 @@ const NATTRAVERSALREQUEST2: u8 = 5;
pub fn handle_recevied_message( pub fn handle_recevied_message(
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>, messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
messages_received: &Arc<Mutex<HashMap<String, (EventType, Timestamp)>>>,
recevied_message: &Vec<u8>, recevied_message: &Vec<u8>,
crypto_pair: &CryptographicSignature, crypto_pair: &CryptographicSignature,
//socket_addr: &SocketAddr, //socket_addr: &SocketAddr,
@@ -47,7 +89,7 @@ pub fn handle_recevied_message(
server_name: &String, server_name: &String,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr, ip: SocketAddr,
handhsake_history: &Arc<Mutex<HandshakeHistory>>, handhsake_history: Arc<HandshakeHistory>,
) { ) {
if recevied_message.len() < 4 { if recevied_message.len() < 4 {
return; return;
@@ -78,6 +120,7 @@ pub fn handle_recevied_message(
cmd_tx, cmd_tx,
ip, ip,
messages_list, messages_list,
messages_received,
handhsake_history, handhsake_history,
senders, senders,
); );
@@ -86,80 +129,14 @@ pub fn handle_recevied_message(
None => {} None => {}
Some(resp_msg) => { Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg); println!("msg_sent:{:?}", resp_msg);
senders.send_via( senders.send_dispatch(
0,
resp_msg, resp_msg,
ip.to_string(), ip.to_string(),
is_resp_to_server_handshake, is_resp_to_server_handshake,
messages_list, messages_list.clone(),
); );
} }
} }
// Lock the mutex to access the HashMap
/*let list = messages_list.lock().unwrap();
let eventtype = list.get(&id); // Clone the enum so we can release the lock if needed
match eventtype {
Some(EventType::ServerHelloReply) => {
/*registration::register_ip_addresses(
crypto_pair,
socket_addr.to_string(),
senders,
&messages_list, // Pass the mutable reference inside the lock
546,
);*/
}
Some(_) => print!("Not implemented"),
None => {
let message_type = recevied_message[4];
// Handle handshake
if message_type == 1 {
let mut resp_to_serv = false;
println!("verify the signature");
let parsed_received_message = HandshakeMessage::parse(recevied_message.to_vec());
let received_name = String::from_utf8(parsed_received_message.name).expect("error");
let peer_pubkey = tokio::runtime::Runtime::new()
.unwrap()
.block_on(get_peer_key(&received_name))
.expect("failed to retrieve public key");
if received_name == server_name.to_string() {
resp_to_serv = true;
}
if !verify_signature(peer_pubkey, recevied_message) {
println!(
"incorrect signature from given peer: {}, ignoring message {}",
&received_name, id
);
} else {
// verify if this is a server handshake request
let username_size = crypto_pair.username.len();
let hello_handshake = HandshakeMessage::helloReply(
id as u32,
username_size as u16 + 4,
crypto_pair.username.clone(),
);
//HandshakeMessage::display(&hello_handshake);
let hello_handshake_serialized = hello_handshake.serialize();
let message_signed = sign_message(crypto_pair, &hello_handshake_serialized);
senders.send_via(0, message_signed, socket_addr.to_string(), resp_to_serv);
let mut list = messages_list.lock().expect("Failed to lock messages_list");
match list.get(&id) {
Some(_) => {
list.remove(&id);
}
None => {
list.insert(id, EventType::ServerHelloReply);
}
}
}
}
print!("Message not found for ID: {}", id)
}
}*/
} }
pub fn parse_message( pub fn parse_message(
@@ -169,10 +146,10 @@ pub fn parse_message(
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr, ip: SocketAddr,
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>, messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
handhsake_history_mutex: &Arc<Mutex<HandshakeHistory>>, messages_received: &Arc<Mutex<HashMap<String, (EventType, Timestamp)>>>,
handhsake_history: Arc<HandshakeHistory>,
senders: &MultipleSenders, senders: &MultipleSenders,
) -> Option<Vec<u8>> { ) -> Option<Vec<u8>> {
let mut handhsake_history = handhsake_history_mutex.lock().unwrap();
let cmd_tx_clone = cmd_tx.clone(); let cmd_tx_clone = cmd_tx.clone();
let id_bytes: [u8; 4] = received_message[0..ID] let id_bytes: [u8; 4] = received_message[0..ID]
@@ -181,6 +158,14 @@ pub fn parse_message(
let msgtype = received_message[ID]; let msgtype = received_message[ID];
messages_received
.lock()
.expect("couldnt lock received map")
.insert(
ip.to_string(),
(EventType::from_msgtype(msgtype), Timestamp::now()),
);
let length_bytes: [u8; 2] = received_message[TYPE..LENGTH] let length_bytes: [u8; 2] = received_message[TYPE..LENGTH]
.try_into() .try_into()
.expect("Taille incorrecte"); .expect("Taille incorrecte");
@@ -188,8 +173,9 @@ pub fn parse_message(
let msg_length = u16::from_be_bytes(length_bytes) as usize; let msg_length = u16::from_be_bytes(length_bytes) as usize;
// verify signature // verify signature
match msgtype { match msgtype {
HELLO | HELLOREPLY | NODATUM | NATTRAVERSALREQUEST | NATTRAVERSALREQUEST2 => { HELLO | HELLOREPLY => {
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
println!("hello");
println!("name received length: {}", ilength); println!("name received length: {}", ilength);
let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize]; let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let received_username = String::from_utf8(received_name.to_vec()); let received_username = String::from_utf8(received_name.to_vec());
@@ -207,12 +193,10 @@ pub fn parse_message(
HELLOREPLY => { HELLOREPLY => {
handhsake_history.add_new_handshake(peer_pubkey, "".to_string(), ip); handhsake_history.add_new_handshake(peer_pubkey, "".to_string(), ip);
} }
_ => {} _ => {
println!("no handshake added");
}
} }
let signature: [u8; SIGNATURE] = received_message
[LENGTH + msg_length..LENGTH + msg_length + SIGNATURE]
.try_into()
.expect("Taille incorrecte");
if !verify_signature(peer_pubkey, &received_message) { if !verify_signature(peer_pubkey, &received_message) {
println!( println!(
"incorrect signature from given peer: {}, ignoring message of type {} with id {}", "incorrect signature from given peer: {}, ignoring message of type {} with id {}",
@@ -227,7 +211,7 @@ pub fn parse_message(
} }
} }
} }
ROOTREPLY => { ROOTREPLY | NODATUM | NATTRAVERSALREQUEST | NATTRAVERSALREQUEST2 => {
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength); println!("name received length: {}", ilength);
if let Some(peerinfo) = handhsake_history.get_peer_info_ip(ip.to_string()) { if let Some(peerinfo) = handhsake_history.get_peer_info_ip(ip.to_string()) {
@@ -249,17 +233,25 @@ pub fn parse_message(
// Message handling // Message handling
let mut constructed_message: Option<Vec<u8>> = None; let mut constructed_message: Option<Vec<u8>> = None;
match msgtype { match msgtype {
// PING
//
// envoie un OK
PING => { PING => {
constructed_message = construct_message(OK, Vec::new(), id, crypto_pair); constructed_message = construct_message(OK, Vec::new(), id, crypto_pair);
} }
//
// OK OK => {
// let mut guard = messages_list.lock().unwrap();
// rien ? let res = guard.get(&id);
// si NATTRAVERSALREQUEST alors match res {
Some(ev) => {
println!("{:?}", ev);
let _ = &guard.remove_entry(&id);
println!("message {} retiré de la liste", id);
}
None => {
println!("ping non trouvé");
}
}
}
NATTRAVERSALREQUEST => { NATTRAVERSALREQUEST => {
// send ok & send nattraversalrequest2 to peer // send ok & send nattraversalrequest2 to peer
constructed_message = construct_message(OK, Vec::new(), id, crypto_pair); constructed_message = construct_message(OK, Vec::new(), id, crypto_pair);
@@ -276,12 +268,11 @@ pub fn parse_message(
crypto_pair, crypto_pair,
); );
senders.send_via( senders.send_dispatch(
0,
natreq2.expect("couldnt construct message nattraversalrequest2"), natreq2.expect("couldnt construct message nattraversalrequest2"),
address, address,
false, false,
&messages_list, messages_list.clone(),
); );
} }
@@ -291,22 +282,39 @@ pub fn parse_message(
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
let received_address = &received_message[LENGTH..LENGTH + ilength as usize]; let received_address = &received_message[LENGTH..LENGTH + ilength as usize];
let address = String::from_utf8(received_address.to_vec()).expect("wrong name"); println!("received_address:{:?}", received_message);
//let addressv4 = IpAddr::V4(Ipv4Addr::from_octets(
// received_address[0..4].try_into().expect("incorrect size"),
//));
let bytes: [u8; 4] = received_address[0..4].try_into().expect("incorrect size");
let addr_v4 = Ipv4Addr::from(bytes);
let addressv4 = IpAddr::V4(addr_v4);
let address = SocketAddr::new(
addressv4,
u16::from_be_bytes(received_address[4..6].try_into().expect("incorrect size")),
);
println!("ip: {}", address);
let pingreq = construct_message(PING, Vec::new(), id, crypto_pair); let pingreq = construct_message(PING, Vec::new(), id, crypto_pair);
senders.send_via( senders.send_dispatch(
0, constructed_message.expect("couldnt construct message ping request"),
pingreq.expect("couldnt construct message ping request"), ip.to_string(),
address,
false, false,
&messages_list, messages_list.clone(),
); );
senders.send_dispatch(
pingreq.expect("couldnt construct message ping request"),
address.to_string(),
false,
messages_list.clone(),
);
constructed_message = None;
} }
//
// ERROR
//
// affiche un msg d'erreur
ERROR => { ERROR => {
if let Ok(err_received) = if let Ok(err_received) =
String::from_utf8(received_message[LENGTH..(msg_length + LENGTH)].to_vec()) String::from_utf8(received_message[LENGTH..(msg_length + LENGTH)].to_vec())
@@ -318,13 +326,22 @@ pub fn parse_message(
let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg)); let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg));
} }
} }
// HELLO
//
// envoie une hello reply
//
HELLO => { HELLO => {
let mut payload = Vec::new(); let mut payload = Vec::new();
let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH]
.try_into()
.expect("incorrect size"),
);
let received_username =
&received_message[LENGTH + EXTENSIONS..LENGTH + received_length as usize];
handhsake_history.update_peer_info(
ip.to_string(),
String::from_utf8(received_username.to_vec()).expect("invalid conversion"),
);
payload.extend_from_slice(&0u32.to_be_bytes()); payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes()); payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
@@ -332,10 +349,7 @@ pub fn parse_message(
return helloreply; return helloreply;
} }
// HELLOREPLY
//
//
// ajoute a la liste des peers handshake
HELLOREPLY => { HELLOREPLY => {
// ajoute l'username a la liste des peers handshake // ajoute l'username a la liste des peers handshake
let received_length = u16::from_be_bytes( let received_length = u16::from_be_bytes(
@@ -350,123 +364,114 @@ pub fn parse_message(
String::from_utf8(received_username.to_vec()).expect("invalid conversion"), String::from_utf8(received_username.to_vec()).expect("invalid conversion"),
); );
// verifie s'il faut renvoyer un root request // verifie s'il faut renvoyer un root request
let guard = messages_list.lock().expect("Échec du verrouillage"); let mut guard = messages_list.lock().expect("Échec du verrouillage");
let res = guard.get(&id); let res = guard.get(&id);
match res { match res {
Some(ev) => { Some(ev) => {
match ev { match ev {
EventType::SendRootRequest => { EventType::HelloThenRootRequest => {
// envoyer la root request // envoyer la root request
let _ = &guard.remove_entry(&id);
println!("message {} retiré de la liste", id);
let rootrequest = construct_message( let rootrequest = construct_message(
ROOTREQUEST, ROOTREQUEST,
Vec::new(), Vec::new(),
generate_id(), generate_id(),
crypto_pair, crypto_pair,
); );
//&guard.insert(, v)
return rootrequest; return rootrequest;
} }
EventType::Hello => {
let _ = &guard.remove_entry(&id);
println!("message {} retiré de la liste", id);
}
_ => {}
} }
} }
None => {} None => {}
} }
} }
//
// ROOTREQUEST
//
// envoie un root reply
//
// ROOTREPLY
//
ROOTREPLY => { ROOTREPLY => {
// recuperer le pseudo du peers ayant repondu // recuperer le pseudo du peers ayant repondu
let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string()); let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string());
match peers_exist { match peers_exist {
Some(peerinfo) => { Some(peerinfo) => {
// envoyer le hash a la gui let mut guard = messages_list.lock().expect("Échec du verrouillage");
let received_hash: NodeHash = received_message[LENGTH..(32 + LENGTH)] let res = guard.get(&id);
.try_into() match res {
.expect("incorrect size"); Some(ev) => {
let res = cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived( match ev {
peerinfo.username.clone(), EventType::RootRequest => {
received_hash, // envoyer la root request
)); let _ = &guard.remove_entry(&id);
println!("file tree sent") println!("message {} retiré de la liste", id);
// envoyer le hash a la gui
let received_hash: NodeHash = received_message
[LENGTH..(32 + LENGTH)]
.try_into()
.expect("incorrect size");
let res =
cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived(
peerinfo.username.clone(),
received_hash,
));
println!("file tree sent");
// envoyer un datum
let mut payload = Vec::new();
payload.extend_from_slice(&received_hash);
let new_id = generate_id();
let datumreqest = construct_message(
DATUMREQUEST,
payload,
new_id,
crypto_pair,
);
constructed_message = datumreqest;
guard.insert(new_id, EventType::DatumRequest);
}
_ => {}
}
}
None => {}
}
} }
None => { None => {
eprintln!("no peers found"); eprintln!("no peers found");
} }
} }
} }
// DATUM => {
// DATUMREQUEST let mut guard = messages_list.lock().expect("Échec du verrouillage");
// let res = guard.get(&id);
// envoie le datum match res {
// Some(ev) => match ev {
// NODATUM EventType::DatumRequest => {
// let _ = &guard.remove_entry(&id);
// affiche un msg d'erreur println!("message {} retiré de la liste", id);
// let received_length = u16::from_be_bytes(
// DATUM received_message[TYPE..LENGTH]
// .try_into()
// parcourt le directory recu ou le big directory et renvoie une DATUMREQUEST pour chaque .expect("incorrect size"),
// directory ou big directory lu );
// let received_datum = &received_message[LENGTH..];
// NATTRAVERSALREQUEST let parsed_node =
// parse_received_datum(received_datum.to_vec(), received_length as usize);
// repond OK et envoie un NATTRAVERSALREQUEST2 au pair B match parsed_node {
// Some(tuple) => {
// NATTRAVERSALREQUEST2 let _ =
// cmd_tx.send(NetworkEvent::FileTreeReceived(tuple.0, tuple.1));
// envoie OK à S puis envoie un ping à S }
None => {}
// PING }
// }
// envoie un OK _ => {}
// },
// OK None => {}
// }
// si NATTRAVERSALREQUEST alors }
//
// ERROR
//
// affiche un msg d'erreur
//
// HELLO
//
// envoie une hello reply
//
// HELLOREPLY
//
// envoie un root request
//
// ROOTREQUEST
//
// envoie un root reply
//
// ROOTREPLY
//
// envoie un datum request
//
// DATUMREQUEST
//
// envoie le datum
//
// NODATUM
//
// affiche un msg d'erreur
//
// DATUM
//
// parcourt le directory recu ou le big directory et renvoie une DATUMREQUEST pour chaque
// directory ou big directory lu
//
// NATTRAVERSALREQUEST
//
// repond OK et envoie un NATTRAVERSALREQUEST2 au pair B
//
// NATTRAVERSALREQUEST2
//
// envoie OK à S puis envoie un ping à S
_ => return None, _ => return None,
}; };
constructed_message constructed_message

View File

@@ -1,9 +1,15 @@
use crossbeam_channel::Receiver;
use tokio::sync::oneshot;
use tokio::time::sleep;
use crate::P2PSharedData; use crate::P2PSharedData;
use crate::cryptographic_signature::CryptographicSignature;
use crate::message_handling::EventType; use crate::message_handling::EventType;
use crate::message_handling::handle_recevied_message; use crate::message_handling::handle_recevied_message;
use crate::peers_refresh::HandshakeHistory; use crate::peers_refresh::HandshakeHistory;
use std::collections::HashMap; use crate::threads_handling::Worker;
use std::clone;
use std::collections::{HashMap, HashSet};
use std::hash::Hash;
use std::net::SocketAddr; use std::net::SocketAddr;
use std::net::UdpSocket; use std::net::UdpSocket;
use std::sync::{Arc, Mutex}; use std::sync::{Arc, Mutex};
@@ -12,15 +18,12 @@ use std::sync::mpsc::{self, Sender};
use std::thread; use std::thread;
use std::collections::VecDeque; use std::collections::VecDeque;
use std::time::SystemTime;
use std::time::UNIX_EPOCH;
use std::time::{Duration, Instant}; use std::time::{Duration, Instant};
use crate::NetworkEvent; use crate::NetworkEvent;
pub struct MultipleSenders {
senders: Vec<Sender<Message>>,
response_channel: crossbeam_channel::Sender<NetworkEvent>,
}
pub struct Message { pub struct Message {
pub payload: Vec<u8>, pub payload: Vec<u8>,
pub address: String, pub address: String,
@@ -30,175 +33,77 @@ pub struct Message {
struct RetryMessage { struct RetryMessage {
msg: Message, msg: Message,
attempts: u8, attempts: u8,
next_try: Instant, next_try: u64,
}
pub struct MultipleSenders {
sender: crossbeam_channel::Sender<Message>,
receiver: crossbeam_channel::Receiver<Message>,
response_channel: crossbeam_channel::Sender<NetworkEvent>,
retry_queue: Arc<Mutex<VecDeque<RetryMessage>>>,
completed_messages: HashSet<i32>,
} }
impl MultipleSenders { impl MultipleSenders {
/*pub fn new(num_channels: usize, socket: &Arc<UdpSocket>) -> Self {
let mut senders = Vec::new();
// Wrap the socket in an Arc so it can be shared across threads
for i in 0..num_channels {
let (tx, rx) = mpsc::channel::<Message>();
// Clone the Arc (this just bumps the reference count, it doesn't copy the socket)
let sock_clone = Arc::clone(&socket);
senders.push(tx);
thread::spawn(move || {
println!("Canal d'envoi {} prêt", i);
for msg in rx {
// Use the cloned Arc inside the thread
if let Err(e) = sock_clone.send_to(&msg.payload, &msg.address) {
eprintln!(
"Erreur d'envoi sur canal {}: {}, address: {}",
i, e, &msg.address
);
} else {
let message_id: [u8; 4] = msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let message_type = msg.payload[4];
println!(
"Message {0} de type {1} envoyé à {2} par le canal {3}",
id, message_type, msg.address, i
);
}
}
});
}
MultipleSenders { senders }
}*/
pub fn new( pub fn new(
num_channels: usize, num_channels: usize,
socket: &Arc<UdpSocket>, socket: &Arc<UdpSocket>,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
threads: &mut Vec<Worker>,
) -> Self { ) -> Self {
let mut senders = Vec::new(); let (tx1, rx1) = crossbeam_channel::unbounded();
for i in 0..num_channels { for i in 0..num_channels {
let (tx, rx) = mpsc::channel::<Message>();
let sock_clone = Arc::clone(&socket); let sock_clone = Arc::clone(&socket);
let cmd_tx_clone = cmd_tx.clone(); let cmd_tx_clone = cmd_tx.clone();
let rx: Receiver<Message> = rx1.clone();
senders.push(tx); let thread = thread::spawn(move || {
thread::spawn(move || {
println!("Canal d'envoi {} prêt", i); println!("Canal d'envoi {} prêt", i);
let mut queue: VecDeque<RetryMessage> = VecDeque::new();
let max_attempts = 5;
loop { loop {
// Priorité aux messages en attente prêts à être réessayés // Priorité aux messages en attente prêts à être réessayés
if let Some(front) = queue.front() {
if front.next_try <= Instant::now() {
// On prend le message de la queue
let mut item = queue.pop_front().unwrap();
match sock_clone.send_to(&item.msg.payload, &item.msg.address) {
Ok(_) => {
if (&item).msg.is_resp_to_server_handshake {
let res =
cmd_tx_clone.send(NetworkEvent::ConnectedHandshake());
}
let message_id: [u8; 4] =
item.msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let message_type = item.msg.payload[4];
println!(
"Message {0} de type {1} envoyé à {2} par le canal {3} (retry {4})",
id, message_type, item.msg.address, i, item.attempts
);
}
Err(e) => {
item.attempts += 1;
if item.attempts >= max_attempts {
let str = format!(
"Abandon du message après {} tentatives sur canal {}: {}, address: {}",
item.attempts, i, e, item.msg.address
);
if (&item).msg.is_resp_to_server_handshake {
let res = cmd_tx_clone
.send(NetworkEvent::ServerHandshakeFailed(str));
}
} else {
// Backoff exponentiel simple
let backoff = Duration::from_millis(
2000u64.saturating_pow(item.attempts as u32),
);
item.next_try = Instant::now() + backoff;
eprintln!(
"Erreur d'envoi sur canal {}: {}, reprogrammation dans {:?}, tentative {}",
i, e, backoff, item.attempts
);
queue.push_front(item); // remettre en tête pour réessayer plus tôt
}
}
}
continue;
}
}
// Si aucun retry prêt, on bloque sur rx avec timeout court, pour pouvoir traiter les timers // Si aucun retry prêt, on bloque sur rx avec timeout court, pour pouvoir traiter les timers
match rx.recv_timeout(Duration::from_millis(200)) { let msg = rx.recv().unwrap();
Ok(msg) => { match sock_clone.send_to(&msg.payload, &msg.address) {
// On tente d'envoyer immédiatement Ok(_) => {
match sock_clone.send_to(&msg.payload, &msg.address) { if msg.is_resp_to_server_handshake {
Ok(_) => { let res = cmd_tx_clone.send(NetworkEvent::ConnectedHandshake());
if msg.is_resp_to_server_handshake {
let res =
cmd_tx_clone.send(NetworkEvent::ConnectedHandshake());
}
let message_id: [u8; 4] =
msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let message_type = msg.payload[4];
println!(
"Message {0} de type {1} envoyé à {2} par le canal {3}",
id, message_type, msg.address, i
);
}
Err(e) => {
eprintln!(
"Erreur d'envoi initial sur canal {}: {}, address: {} -- mise en queue pour retry",
i, e, &msg.address
);
let retry = RetryMessage {
msg,
attempts: 1,
next_try: Instant::now() + Duration::from_millis(100),
};
queue.push_back(retry);
}
} }
} let message_id: [u8; 4] =
Err(mpsc::RecvTimeoutError::Timeout) => { msg.payload[0..4].try_into().expect("size error");
// Permet de vérifier la queue à nouveau let id = i32::from_be_bytes(message_id);
continue; let message_type = msg.payload[4];
} println!(
Err(mpsc::RecvTimeoutError::Disconnected) => { "Message {0} de type {1} envoyé à {2} par le canal {3}",
// Le sender a été fermé ; vider la queue et sortir id, message_type, msg.address, i
eprintln!( );
"Sender fermé pour le canal {}, fermeture du thread d'envoi", }
i Err(e) => {
eprintln!(
"Erreur d'envoi initial sur canal {}: {}, address: {}",
i, e, &msg.address
); );
break;
} }
} }
} }
}); });
threads.push(Worker::spawn(
thread,
crate::threads_handling::WorkerType::MSGSENDER,
));
} }
MultipleSenders { MultipleSenders {
senders, sender: tx1,
receiver: rx1,
response_channel: cmd_tx.clone(), response_channel: cmd_tx.clone(),
retry_queue: Arc::new(Mutex::new(VecDeque::new())),
completed_messages: HashSet::new(),
} }
} }
/*
/// Envoie un message via un canal spécifique (round-robin ou index précis) /// Envoie un message via un canal spécifique (round-robin ou index précis)
pub fn send_via( pub fn send_via(
&self, &self,
@@ -226,55 +131,147 @@ impl MultipleSenders {
let id = i32::from_be_bytes(message_id); let id = i32::from_be_bytes(message_id);
guard.insert(id, EventType::SendRootRequest); guard.insert(id, EventType::SendRootRequest);
} }
}*/
pub fn send_dispatch(
&self,
data: Vec<u8>,
remote_addr: String,
is_resp_to_server_handshake: bool,
messages_list: Arc<Mutex<HashMap<i32, EventType>>>,
) {
let msg_to_send = Message {
payload: data.clone(),
address: remote_addr,
is_resp_to_server_handshake,
};
let _ = self.sender.send(msg_to_send);
println!("message sent");
} }
/*pub fn start_receving_thread( pub fn add_message_to_retry_queue(
socket: &Arc<UdpSocket>, &self,
messages_list: &Arc<HashMap<i32, EventType>>, data: Vec<u8>,
crypto_pair: &Arc<CryptographicSignature>, remote_addr: String,
socket_addr: SocketAddr, is_resp_to_server_handshake: bool,
senders: &Arc<MultipleSenders>,
) { ) {
let sock_clone = Arc::clone(socket); let msg_to_send = Message {
let cryptopair_clone = Arc::clone(crypto_pair); payload: data.clone(),
let senders_clone = Arc::clone(senders); address: remote_addr,
is_resp_to_server_handshake,
};
let base: u64 = 2;
let attempts = 1;
let backoff = base.saturating_pow(attempts); // 2^1 == 2 seconds
let newretry = RetryMessage {
next_try: SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("clock")
.as_secs()
+ backoff,
msg: msg_to_send,
attempts: attempts as u8,
};
let messages_clone = Arc::clone(messages_list); let mut guard = self.retry_queue.lock().unwrap();
thread::spawn(move || { guard.push_back(newretry);
let mut buf = [0u8; 1024]; }
}
loop { pub fn start_retry_thread(
match sock_clone.recv_from(&mut buf) { senders: Arc<MultipleSenders>,
Ok((amt, src)) => { max_attempts: u8,
handle_recevied_message( messages_list: Arc<Mutex<HashMap<i32, EventType>>>,
&messages_clone, threads: &mut Vec<Worker>,
&buf.to_vec(), ) {
&cryptopair_clone, let thread = thread::spawn(move || {
&socket_addr, loop {
&senders_clone, thread::sleep(Duration::from_millis(100));
); let mut q = senders.retry_queue.lock().unwrap();
println!("Reçu {} octets de {}: {:?}", amt, src, &buf[..amt]); //println!("size of retry thread: {}", q.len());
if let Some(front) = q.pop_front() {
// on verifie si le message a recu une reponse
let message_id: [u8; 4] = front.msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
let message_type = front.msg.payload[4];
let guard = messages_list.lock().unwrap();
if guard.contains_key(&id) {
drop(guard);
// si le message est n'a pas encore a etre traité, on le
// remet en queue de liste
if front.next_try
<= SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("clock")
.as_secs()
{
let attempt = front.attempts + 1;
if attempt >= max_attempts {
let str = format!(
"Abandon du message {} de type {} après {} tentatives, address: {}",
id, message_type, front.attempts, front.msg.address
);
println!("{}", str);
if front.msg.is_resp_to_server_handshake {
let res = senders
.response_channel
.send(NetworkEvent::ServerHandshakeFailed(str));
}
} else {
let str = format!(
"Reemission du message {} de type {}, {} tentatives, address: {}",
id, message_type, front.attempts, front.msg.address
);
println!("{}", str);
senders.send_dispatch(
front.msg.payload.clone(),
front.msg.address.clone(),
front.msg.is_resp_to_server_handshake,
messages_list.clone(),
);
let base: u64 = 2;
let backoff = base.saturating_pow(attempt as u32); // 2^1 == 2 seconds
let newretry = RetryMessage {
next_try: SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("clock")
.as_secs()
+ backoff,
msg: front.msg,
attempts: attempt,
};
q.push_back(newretry); // remettre en tête pour réessayer plus tôt
}
} else {
q.push_back(front); // remettre en tête pour réessayer plus tôt
} }
Err(e) => eprintln!("Erreur de réception: {}", e),
} }
} }
}); }
}*/ });
threads.push(Worker::spawn(
thread,
crate::threads_handling::WorkerType::MSGRETRY,
));
} }
pub fn start_receving_thread( pub fn start_receving_thread(
shared_data: &P2PSharedData, shared_data: &mut P2PSharedData,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
handshake_history: &Arc<Mutex<HandshakeHistory>>, handshake_history: Arc<HandshakeHistory>,
) { ) {
let sock_clone = shared_data.socket(); let sock_clone = shared_data.socket();
let cryptopair_clone = shared_data.cryptopair(); let cryptopair_clone = shared_data.cryptopair();
let senders_clone = shared_data.senders(); let senders_clone = shared_data.senders();
let messages_clone = shared_data.messages_list(); let messages_clone = shared_data.messages_list();
let messages_received_clone = shared_data.messages_received();
let servername_clone = shared_data.servername(); let servername_clone = shared_data.servername();
let thread = thread::spawn(move || {
let handshake_clone = handshake_history.clone();
thread::spawn(move || {
let mut buf = [0u8; 1024]; let mut buf = [0u8; 1024];
loop { loop {
match sock_clone.recv_from(&mut buf) { match sock_clone.recv_from(&mut buf) {
@@ -284,17 +281,22 @@ pub fn start_receving_thread(
println!("Reçu {} octets de {}: {:?}", amt, src, received_data); println!("Reçu {} octets de {}: {:?}", amt, src, received_data);
handle_recevied_message( handle_recevied_message(
&messages_clone, &messages_clone,
&messages_received_clone,
&received_data, &received_data,
&cryptopair_clone, &cryptopair_clone,
&senders_clone, &senders_clone,
&servername_clone, &servername_clone,
cmd_tx.clone(), cmd_tx.clone(),
src, src,
&handshake_clone, handshake_history.clone(),
); );
} }
Err(e) => eprintln!("Erreur de réception: {}", e), Err(e) => eprintln!("Erreur de réception: {}", e),
} }
} }
}); });
shared_data.threads.push(Worker::spawn(
thread,
crate::threads_handling::WorkerType::MSGRECEPTION,
));
} }

View File

@@ -48,18 +48,23 @@ pub fn construct_message(
return Some(message); return Some(message);
} }
ERROR | DATUMREQUEST => { ERROR | DATUMREQUEST => {
message.extend_from_slice(&payload.len().to_be_bytes()); let a = payload.len() as u16;
println!("payload size:{}", a);
message.extend_from_slice(&a.to_be_bytes());
message.extend_from_slice(&payload); message.extend_from_slice(&payload);
return Some(message); return Some(message);
} }
ROOTREPLY | NODATUM | DATUM | NATTRAVERSALREQUEST => { ROOTREPLY | NODATUM | DATUM | NATTRAVERSALREQUEST => {
println!("payload:{:?}", &payload); println!("payload:{:?}", &payload);
message.extend_from_slice(&(payload.len() as u16).to_be_bytes()); let a = payload.len() as u16;
println!("payload size:{}", a);
message.extend_from_slice(&a.to_be_bytes());
message.extend_from_slice(&payload); message.extend_from_slice(&payload);
println!("payload:{:?}", &message); println!("payload:{:?}", &message);
let signature = sign_message(crypto_pair, &message); let signature = sign_message(crypto_pair, &message);
message.extend_from_slice(&signature); message.extend_from_slice(&signature);
return Some(message); println!("message_to_send_len:{}", &message.len());
return Some(signature);
} }
_ => {} _ => {}

View File

@@ -1,17 +1,22 @@
// this class consists of a thread that will re send pings every time the first element // this class consists of a thread that will re send pings every time the first element
// of the stack is at the correct unix time // of the stack is at the correct unix time
pub use crate::message_handling::*;
use std::{ use std::{
collections::{HashMap, VecDeque}, collections::{HashMap, VecDeque},
net::{AddrParseError, Ipv4Addr, SocketAddr}, net::{AddrParseError, Ipv4Addr, SocketAddr},
ops::Add, ops::Add,
process::Command, process::Command,
sync::{Arc, Mutex}, sync::{Arc, Mutex},
thread, thread::{self, JoinHandle},
time::{self, Duration, SystemTime}, time::{self, Duration, SystemTime},
}; };
use crate::NetworkEvent; use crate::{
NetworkEvent, cryptographic_signature::CryptographicSignature,
messages_channels::MultipleSenders, threads_handling::Worker,
};
use crate::{ use crate::{
P2PSharedData, construct_message, generate_id, messages_structure, P2PSharedData, construct_message, generate_id, messages_structure,
registration::perform_handshake, registration::perform_handshake,
@@ -26,63 +31,35 @@ pub struct PeerInfo {
pub ip: SocketAddr, pub ip: SocketAddr,
} }
#[derive(Debug, Clone)]
pub struct HandshakeHistory { pub struct HandshakeHistory {
//time_k_ip_v: HashMap<u64, u64>, pub username_k_peerinfo_v: Arc<Mutex<HashMap<String, PeerInfo>>>,
username_k_peerinfo_v: HashMap<String, PeerInfo>, ip_k_peerinfo_v: Arc<Mutex<HashMap<String, PeerInfo>>>,
ip_k_peerinfo_v: HashMap<String, PeerInfo>,
} }
impl HandshakeHistory { impl HandshakeHistory {
pub fn new() -> HandshakeHistory { pub fn new() -> HandshakeHistory {
HandshakeHistory { HandshakeHistory {
//time_k_ip_v: HashMap::new(), username_k_peerinfo_v: Arc::new(Mutex::new(HashMap::new())),
//ip_k_peerinfo_v: HashMap::new(), ip_k_peerinfo_v: Arc::new(Mutex::new(HashMap::new())),
username_k_peerinfo_v: HashMap::new(),
ip_k_peerinfo_v: HashMap::new(),
} }
} }
/*pub fn update_handshake(&self) { pub fn get_peer_info_username(&self, username: String) -> Option<PeerInfo> {
let hashmap_shared = Arc::new(self.username_k_peerinfo_v); //self.username_k_peerinfo_v.get(&username).clone()
thread::spawn(move || {
let selfhashmap = hashmap_shared.clone();
loop {
for peer in selfhashmap.keys() {
let peer_ip = selfhashmap.get(peer);
// send ping
}
let mut child = Command::new("sleep").arg("10").spawn().unwrap();
let _result = child.wait().unwrap();
}
});
}*/
pub fn get_peer_info_username(&self, username: String) -> Option<&PeerInfo> { let guard = self.username_k_peerinfo_v.lock().unwrap();
self.username_k_peerinfo_v.get(&username).clone()
guard.get(&username).cloned()
} }
pub fn get_peer_info_ip(&self, ip: String) -> Option<&PeerInfo> { pub fn get_peer_info_ip(&self, ip: String) -> Option<PeerInfo> {
self.ip_k_peerinfo_v.get(&ip).clone() let guard = self.ip_k_peerinfo_v.lock().unwrap();
guard.get(&ip).cloned()
} }
pub fn update_handshake(&self) { pub fn update_peer_info(&self, ip: String, username: String) {
// clone the map so we own it (cheap if PeerInfo is Clone)
let map_clone: Arc<HashMap<String, PeerInfo>> =
Arc::new(self.username_k_peerinfo_v.clone());
//let map_ip_clone: Arc<HashMap<String, PeerInfo>> = Arc::new(self.ip_k_peerinfo_v.clone());
let map_for_thread = Arc::clone(&map_clone);
thread::spawn(move || {
loop {
// Arc<HashMap<..>> derefs to &HashMap so these reads work
for (peer, peerinfo) in map_for_thread.iter() {
// send ping to peerinfo
}
thread::sleep(Duration::from_secs(10));
}
});
}
pub fn update_peer_info(&mut self, ip: String, username: String) {
let peerinfo = self.get_peer_info_ip(ip.clone()); let peerinfo = self.get_peer_info_ip(ip.clone());
match peerinfo { match peerinfo {
Some(peer_info) => match ip.parse::<SocketAddr>() { Some(peer_info) => match ip.parse::<SocketAddr>() {
@@ -92,8 +69,18 @@ impl HandshakeHistory {
pubkey: peer_info.pubkey, pubkey: peer_info.pubkey,
ip: addr, ip: addr,
}; };
self.ip_k_peerinfo_v.insert(ip, new_peer_info.clone()); let mut guardb = self.ip_k_peerinfo_v.lock().unwrap();
self.username_k_peerinfo_v.insert(username, new_peer_info); guardb.insert(ip.to_string(), new_peer_info.clone());
let mut guard = self.username_k_peerinfo_v.lock().unwrap();
guard.insert(username.to_string(), new_peer_info);
println!(
"handshake added: {}, {}, {}",
username.to_string(),
ip.to_string(),
guard.len(),
);
} }
Err(e) => eprintln!("parse error: {}", e), Err(e) => eprintln!("parse error: {}", e),
}, },
@@ -103,43 +90,57 @@ impl HandshakeHistory {
} }
} }
pub fn add_new_handshake(&mut self, hash: VerifyingKey, username: String, ip: SocketAddr) { pub fn get_username_peerinfo_map(&self) -> Arc<Mutex<HashMap<String, PeerInfo>>> {
self.username_k_peerinfo_v.clone()
}
pub fn add_new_handshake(&self, hash: VerifyingKey, username: String, ip: SocketAddr) {
let peerinfo = PeerInfo { let peerinfo = PeerInfo {
username: username.clone(), username: username.clone(),
pubkey: hash, pubkey: hash,
ip, ip,
}; };
self.username_k_peerinfo_v let mut guard = self.username_k_peerinfo_v.lock().unwrap();
.insert(username, peerinfo.clone()); guard.insert(username, peerinfo.clone());
self.ip_k_peerinfo_v let mut guardb = self.ip_k_peerinfo_v.lock().unwrap();
.insert(ip.to_string(), peerinfo.clone()); guardb.insert(ip.to_string(), peerinfo.clone());
} }
} }
pub fn perform_discover( pub fn update_handshake(
username: String, senders: Arc<MultipleSenders>,
hash: String, crypto_pair: Arc<CryptographicSignature>,
sd: &P2PSharedData, messages_list: Arc<Mutex<HashMap<i32, EventType>>>,
server_ip: String, username_k_peerinfo_v: Arc<Mutex<HashMap<String, PeerInfo>>>,
event_tx: Sender<NetworkEvent>, ) -> Worker {
) { let map_for_thread = username_k_peerinfo_v.clone();
// first, sends handshake let handle = thread::spawn(move || {
if hash == "root" { loop {
perform_handshake(sd, username, server_ip, event_tx, false); let guard = map_for_thread.lock().unwrap();
/*if let Some(data) = construct_message( for (peer, peerinfo) in guard.iter() {
messages_structure::ROOTREQUEST, let id = generate_id();
Vec::new(), let mut map = messages_list.lock().unwrap();
generate_id(), map.insert(id, EventType::Ping);
sd.cryptopair_ref(), let pingrequest = construct_message(PING, Vec::new(), id, &crypto_pair);
) { if let Some(ping) = pingrequest {
if let Some(peerinfo) = sd.handshake_ref() { senders.add_message_to_retry_queue(
sd.senders_ref() ping.clone(),
.send_via(0, data, peerinfo.ip.to_string(), false); peerinfo.ip.to_string(),
false,
);
senders.send_dispatch(
ping,
peerinfo.ip.to_string(),
false,
messages_list.clone(),
);
}
} }
}*/ drop(guard);
} else { thread::sleep(Duration::from_secs(240));
// envoyer un datum request }
} });
Worker::spawn(handle, crate::threads_handling::WorkerType::PING)
} }
#[cfg(test)] #[cfg(test)]

View File

@@ -1,19 +1,14 @@
use bytes::Bytes;
use crate::NetworkEvent; use crate::NetworkEvent;
use crate::P2PSharedData; use crate::P2PSharedData;
use crate::cryptographic_signature::{CryptographicSignature, formatPubKey, sign_message}; use crate::cryptographic_signature::CryptographicSignature;
use crate::get_socket_address; use crate::get_server_address;
use crate::message_handling::EventType; use crate::message_handling::EventType;
use crate::messages_channels::MultipleSenders;
use crate::messages_structure::construct_message; use crate::messages_structure::construct_message;
use crate::server_communication::generate_id; use crate::server_communication::generate_id;
use crossbeam_channel::{Receiver, Sender}; use crossbeam_channel::Sender;
use std::collections::HashMap;
use std::net::SocketAddr; use std::net::SocketAddr;
use std::net::UdpSocket;
use std::str::FromStr; use std::str::FromStr;
use std::sync::{Arc, Mutex}; use std::sync::Arc;
/// ///
/// sends the cryptographic signature to the server using a PUT request over the HTTP API. /// sends the cryptographic signature to the server using a PUT request over the HTTP API.
@@ -29,8 +24,13 @@ pub async fn register_with_the_server(
let pubkey_bytes_minus = pubkey_bytes[1..].to_vec(); let pubkey_bytes_minus = pubkey_bytes[1..].to_vec();
let res = client.put(uri).body(pubkey_bytes_minus).send().await?; let res = client.put(uri).body(pubkey_bytes_minus).send().await?;
let res = res.error_for_status()?; let res = res.error_for_status()?;
println!("register ip adresses"); match res.error_for_status() {
Ok(()) Ok(_) => {
println!("register ip adresses");
Ok(())
}
Err(e) => Err(e),
}
} }
pub fn parse_addresses(input: &String) -> Vec<SocketAddr> { pub fn parse_addresses(input: &String) -> Vec<SocketAddr> {
@@ -60,25 +60,31 @@ pub async fn perform_handshake(
println!("username: {}, ip: {}", username.clone(), ip.clone()); println!("username: {}, ip: {}", username.clone(), ip.clone());
let crypto_pair = sd.cryptopair_ref(); let crypto_pair = sd.cryptopair_ref();
let senders = sd.senders_ref(); let senders = sd.senders_ref();
let messages_list = sd.messages_list_ref();
let id = generate_id(); let id = generate_id();
let server_addr_query = get_socket_address(username.clone(), ip.clone()); let server_addr_query = get_server_address(username.clone(), ip.clone());
match server_addr_query.await { match server_addr_query.await {
Some(sockaddr_bytes) => { Some(sockaddr_bytes) => {
sd.set_servername(username); sd.set_servername(username);
sd.set_serveraddress(sockaddr_bytes.to_string());
// first: &SocketAddr // first: &SocketAddr
let mut payload = Vec::new(); let mut payload = Vec::new();
payload.extend_from_slice(&0u32.to_be_bytes()); payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes()); payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let hello_handshake = construct_message(1, payload, id, crypto_pair); let hello_handshake = construct_message(1, payload, id, crypto_pair);
if is_server_handshake {
sd.add_message(id, EventType::Hello);
} else {
sd.add_message(id, EventType::HelloThenRootRequest);
}
match hello_handshake { match hello_handshake {
Some(handshake_message) => { Some(handshake_message) => {
senders.send_via( senders.send_dispatch(
0,
handshake_message, handshake_message,
sockaddr_bytes.to_string(), sockaddr_bytes.to_string(),
is_server_handshake, is_server_handshake,
messages_list, sd.messages_list(),
); );
} }
None => {} None => {}
@@ -110,8 +116,6 @@ pub async fn perform_handshake(
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
// Note this useful idiom: importing names from outer (for mod tests) scope.
use super::*;
/*/// /*///
/// does the procedure to register with the server /// does the procedure to register with the server

View File

@@ -0,0 +1,35 @@
use std::sync::{
Arc,
atomic::{AtomicBool, Ordering},
};
use std::thread::JoinHandle;
pub enum WorkerType {
MSGRECEPTION,
MSGSENDER,
PING,
MSGRETRY,
}
pub struct Worker {
thread: Option<JoinHandle<()>>,
stop: Arc<AtomicBool>,
workertype: WorkerType,
}
impl Worker {
pub fn spawn(thread: JoinHandle<()>, workertype: WorkerType) -> Self {
Worker {
stop: Arc::new(AtomicBool::new(false)),
thread: Some(thread),
workertype,
}
}
pub fn stop(mut self) {
self.stop.store(true, Ordering::Relaxed);
if let Some(h) = self.thread.take() {
let _ = h.join();
}
}
}

View File

@@ -0,0 +1,46 @@
use std::time::{SystemTime, UNIX_EPOCH};
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Timestamp {
secs: u64, // seconds since UNIX epoch
}
unsafe impl Send for Timestamp {}
impl Timestamp {
// Create a Timestamp from current system time
pub fn now() -> Self {
let dur = SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("system time before UNIX_EPOCH");
Self {
secs: dur.as_secs(),
}
}
// Create from explicit fields (optional helper)
pub fn from_secs(secs: u64) -> Self {
Self { secs }
}
// Return underlying seconds
pub fn as_secs(&self) -> u64 {
self.secs
}
// Return elapsed seconds between `self` and `other`.
// Panics if `other` is in the future relative to `self`.
// If you call `Timestamp::now().diff(past)`, it returns seconds since `past`.
pub fn diff(&self, earlier: &Timestamp) -> u64 {
assert!(earlier.secs <= self.secs, "given time is in the future");
self.secs - earlier.secs
}
pub fn to_string(&self) -> String {
let secs_of_day = self.secs % 86_400;
let hh = secs_of_day / 3600;
let mm = (secs_of_day % 3600) / 60;
let ss = secs_of_day % 60;
format!("{:02}:{:02}:{:02}", hh, mm, ss)
}
}

51
todo.md
View File

@@ -1,58 +1,25 @@
# Todo # Todo
## peer discovery ## bugfix
## handshake - ajouter hello et nat a l'exp backoff OK
- peers n'ayant pas d'adresse OK
- verifier le refresh des peers
# Todo
## peer discovery
- get rsquest to the uri /peers/
## registration with the server
- generation of the cryptographic key OK
- put request to the uri (check if the peer is already connected) OK
- udp handshakes OK
- get request to the uri /peers/key to get the public key of a peer OK
- get request to the uri /peers/key/addresses OK
## handshake
- handshake structure OK
- 5min timeout after handshake
- matain connection every 4 min
## data transfer
- request structure
- root/root reply structure
- datum/nodatum and datum structures
- nattraversal 1 and 2 structures
- setting in gui to act as a relay - setting in gui to act as a relay
- chunk, directory, big, bigdirectory structures
## fonctionnalités application
## nat traversal
- make hello and helloreply messages set the first extension bit to announce that peer is available for nat traversal - make hello and helloreply messages set the first extension bit to announce that peer is available for nat traversal
- implement actual nat traversal requests - implement actual nat traversal requests
- implement nat traversal : - implement nat traversal :
- if hello/helloreply doesnt work with a peer, find a peer that supports nat traversal (server in priority) then begin protocol - if hello/helloreply doesnt work with a peer, find a peer that supports nat traversal (server in priority) then begin protocol
fonctionnalités : ## fonctionnalités :
rechercher les fichiers d'un pair rechercher les fichiers d'un pair
telechargement des fichiers telechargement des fichiers
choisir un dossier à partager choisir un dossier à partager
choisir le nombre de canaux choisir le nombre de canaux
handshake server DOING
se deconnecter du réseau DOING
## autre ## autre
socket ipv6 socket ipv6
@@ -71,3 +38,9 @@ socket ipv6
- generer une clé publique OK - generer une clé publique OK
- verifier signature OK - verifier signature OK
- 2 channels -> un pour envoyer et un pour recevoir OK - 2 channels -> un pour envoyer et un pour recevoir OK
- get rsquest to the uri /peers/ OK
- request structure
- root/root reply structure
- datum/nodatum and datum structures
- nattraversal 1 and 2 structures
- chunk, directory, big, bigdirectory structures