5 Commits

Author SHA1 Message Date
Tiago Batista Cardoso
341f8f123d update 2026-01-15 22:37:24 +01:00
Tiago Batista Cardoso
c59ce1be55 peer address in nat traversal 2026-01-15 22:08:11 +01:00
Tiago Batista Cardoso
f735ab34fc implementation 2026-01-15 22:01:48 +01:00
Tiago Batista Cardoso
b54e044ab1 thing 2026-01-11 22:31:31 +01:00
0c601a76b8 Merge pull request 'tmp' (#1) from tmp into master
Reviewed-on: #1
2026-01-11 20:58:30 +00:00
10 changed files with 582 additions and 647 deletions

View File

@@ -1,5 +1,5 @@
use client_network::{
ChunkNode, MerkleNode, MerkleTree, NetworkCommand, NetworkEvent, NodeHash, filename_to_string,
MerkleNode, MerkleTree, NetworkCommand, NetworkEvent, NodeHash, filename_to_string,
node_hash_to_hex_string,
};
use crossbeam_channel::{Receiver, Sender};
@@ -27,7 +27,7 @@ pub struct P2PClientApp {
// GUI State
status_message: String,
known_peers: Vec<String>,
known_peers: Vec<(String, bool)>,
connect_address_input: String,
connected_address: String,
connect_name_input: String,
@@ -49,11 +49,11 @@ pub struct P2PClientApp {
impl P2PClientApp {
pub fn new(cmd_tx: Sender<NetworkCommand>, event_rx: Receiver<NetworkEvent>) -> Self {
//let (root_hash, tree_content) = MerkleNode::generate_base_tree();
let (root_hash, tree_content) = MerkleNode::generate_base_tree();
let mut loaded_fs = HashMap::new();
//let tree = MerkleTree::new(tree_content, root_hash);
//loaded_fs.insert("bob".to_string(), tree);
let tree = MerkleTree::new(tree_content, root_hash);
loaded_fs.insert("bob".to_string(), tree);
Self {
remaining: std::time::Duration::from_secs(0),
@@ -62,7 +62,7 @@ impl P2PClientApp {
network_cmd_tx: cmd_tx,
network_event_rx: event_rx,
status_message: "Client Initialized. Awaiting network status...".to_string(),
known_peers: vec!["bob".to_string()],
known_peers: vec![("bob".to_string(), true)],
connect_address_input: "https://jch.irif.fr:8443".to_string(),
connected_address: "".to_string(),
loaded_fs,
@@ -111,8 +111,8 @@ impl eframe::App for P2PClientApp {
todo!();
self.status_message = format!("✅ Peer connected: {}", addr);
if !self.known_peers.contains(&addr) {
self.known_peers.push(addr);
if !self.known_peers.contains(&(addr, true)) {
self.known_peers.push((addr, true));
}
}
NetworkEvent::PeerListUpdated(peers) => {
@@ -123,41 +123,23 @@ impl eframe::App for P2PClientApp {
NetworkEvent::FileTreeReceived(_peer_id, _) => {
todo!();
//self.loaded_tree_nodes.insert(_peer_id, tree);
//self.status_message = "🔄 File tree updated successfully.".to_string();
// self.loaded_tree_nodes.insert(_peer_id, tree);
self.status_message = "🔄 File tree updated successfully.".to_string();
}
NetworkEvent::FileTreeRootReceived(peer_id, root_hash) => {
// todo!();
todo!();
/*self.status_message = format!(
"🔄 Received Merkle Root from {}: {}",
peer_id,
&root_hash[..8]
);*/
if let Ok(chunknode) = ChunkNode::new(Vec::new()) {
let mut data_map: HashMap<NodeHash, MerkleNode> = HashMap::new();
data_map.insert(root_hash, MerkleNode::Chunk(chunknode));
let tree = MerkleTree {
data: data_map,
root: root_hash,
};
match &self.active_peer {
Some(activepeer) => {
self.loaded_fs.insert(activepeer.clone(), tree);
}
None => {}
}
println!("tree created");
}
//self.active_peer_id = Some(peer_id.clone());
// Request the content of the root directory immediately
/*let _ = self
.network_cmd_tx
.send(NetworkCommand::RequestDirectoryContent(peer_id, root_hash));*/
// self.status_message = format!("🔄 Received Merkle Root from {}: {}", peer_id, &root_hash[..8]);
//
//
// self.active_peer_id = Some(peer_id.clone());
//
//
// // Request the content of the root directory immediately
// let _ = self.network_cmd_tx.send(NetworkCommand::RequestDirectoryContent(
// peer_id,
// root_hash,
// ));
}
NetworkEvent::Connected(ip) => {
self.server_status = ServerStatus::Connected;
@@ -361,29 +343,26 @@ impl eframe::App for P2PClientApp {
} else {
for peer in &self.known_peers {
let is_active =
self.active_peer.as_ref().map_or(false, |id| id == peer); // if peer.id == self.active_peer_id
self.active_peer.as_ref().map_or(false, |id| id == &peer.0); // if peer.id == self.active_peer_id
let selectable;
if &self.active_server == peer {
if &self.active_server == &peer.0 {
selectable =
ui.selectable_label(is_active, format!("{} 📡 🌀", peer))
ui.selectable_label(is_active, format!("{} 📡 🌀", peer.0))
} else {
selectable = ui.selectable_label(is_active, format!("{}", peer));
selectable = ui.selectable_label(is_active, format!("{}", peer.0));
}
if selectable.clicked() {
// switch to displaying this peer's tree
self.active_peer = Some(peer.clone());
self.active_peer = Some(peer.0.clone());
// Request root content if not loaded
if !self
.loaded_fs
.contains_key(self.active_peer.as_ref().unwrap())
{
//todo!();
let _ = self.network_cmd_tx.send(NetworkCommand::Discover(
peer.clone(),
"root".to_string(),
self.connected_address.clone(),
));
let _ = self
.network_cmd_tx
.send(NetworkCommand::ConnectPeer(peer.clone()));
}
}
selectable.context_menu(|ui| {
@@ -394,10 +373,10 @@ impl eframe::App for P2PClientApp {
.button("Utiliser le peer en tant que serveur")
.clicked()
{
self.active_server = peer.to_string();
self.active_server = peer.0.to_string();
let res = self.network_cmd_tx.send(
NetworkCommand::ServerHandshake(
peer.to_string(),
peer.0.to_string(),
self.connected_address.clone(),
),
);
@@ -405,10 +384,29 @@ impl eframe::App for P2PClientApp {
}
_ => {}
}
if ui.button("Send Ping").clicked() {
let res = self
.network_cmd_tx
.send(NetworkCommand::Ping(peer.0.to_string()));
}
if ui.button("Send Nat Traversal Request").clicked() {
match self.network_cmd_tx.send(NetworkCommand::NatTraversal(
peer.0.to_string(),
self.connected_address.clone(),
)) {
Ok(_) => {
print!("[+] successfully sent nat traversal request")
}
Err(_) => {
print!("[-] failed to send nat traversal request")
}
}
}
if ui.button("Infos").clicked() {
// action 3
ui.close();
}
// ... autres boutons
});
}
@@ -527,13 +525,7 @@ impl P2PClientApp {
entry.content_hash,
tree,
depth + 1,
Some(
entry
.filename
.as_slice()
.try_into()
.expect("incorrect size"),
),
Some(entry.filename),
);
}
});
@@ -554,7 +546,7 @@ impl P2PClientApp {
.enabled(true)
.show(ui, |ui| {
for child in &node.children_hashes {
self.draw_file_node(ui, child.content_hash, tree, depth + 1, None);
self.draw_file_node(ui, child.clone(), tree, depth + 1, None);
}
});
}

View File

@@ -80,7 +80,7 @@ impl MerkleTree {
}
}
/*fn generate_random_file_node(
fn generate_random_file_node(
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
@@ -110,9 +110,9 @@ impl MerkleTree {
storage.insert(hash, node);
Ok(hash)
}
}*/
}
/*fn generate_random_directory_node(
fn generate_random_directory_node(
depth: u32,
max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>,
@@ -172,7 +172,7 @@ impl MerkleTree {
storage.insert(hash, node);
Ok(hash)
}
}*/
}
#[derive(Debug, Clone)]
pub struct ChunkNode {
@@ -208,7 +208,7 @@ impl ChunkNode {
// Helper struct
#[derive(Debug, Clone)]
pub struct DirectoryEntry {
pub filename: Vec<u8>,
pub filename: [u8; FILENAME_HASH_SIZE],
pub content_hash: NodeHash,
}
@@ -240,7 +240,7 @@ pub struct BigNode {
}
impl BigNode {
/*pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!(
@@ -249,17 +249,16 @@ impl BigNode {
));
}
Ok(BigNode { children_hashes })
}*/
}
}
#[derive(Debug, Clone)]
pub struct BigDirectoryNode {
//pub children_hashes: Vec<NodeHash>,
pub children_hashes: Vec<DirectoryEntry>,
pub children_hashes: Vec<NodeHash>,
}
impl BigDirectoryNode {
/*pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
pub fn new(children_hashes: Vec<NodeHash>) -> Result<Self, String> {
let n = children_hashes.len();
if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN {
return Err(format!(
@@ -268,14 +267,6 @@ impl BigDirectoryNode {
));
}
Ok(BigDirectoryNode { children_hashes })
}*/
pub fn new(entries: Vec<DirectoryEntry>) -> Result<Self, String> {
if entries.len() > MAX_DIRECTORY_ENTRIES {
return Err(format!("Directory exceeds {} bytes", entries.len()));
}
Ok(BigDirectoryNode {
children_hashes: entries,
})
}
}
@@ -310,14 +301,14 @@ impl MerkleNode {
}
MerkleNode::BigDirectory(node) => {
for hash in &node.children_hashes {
bytes.extend_from_slice(&hash.content_hash);
bytes.extend_from_slice(hash);
}
}
}
bytes
}
/*pub fn generate_random_tree(
pub fn generate_random_tree(
max_depth: u32,
) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new();
@@ -326,9 +317,9 @@ impl MerkleNode {
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage))
}*/
}
/*pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
let mut res = HashMap::new();
let node1 = MerkleNode::Chunk(ChunkNode::new_random());
@@ -378,5 +369,5 @@ impl MerkleNode {
res.insert(root_hash, root);
(root_hash, res)
}*/
}
}

View File

@@ -1,96 +1 @@
use crate::{BigDirectoryNode, DirectoryEntry, DirectoryNode, MerkleNode, MerkleTree, NodeHash};
use sha2::{Digest, Sha256};
const CHUNK: u8 = 0;
const DIRECTORY: u8 = 1;
const BIG: u8 = 2;
const BIGDIRECTORY: u8 = 3;
fn parse_received_datum(recevied_datum: Vec<u8>, datum_length: usize, mut tree: MerkleTree) {
if datum_length > recevied_datum.len() {
return;
}
if datum_length < 32 + 64 {
return;
}
let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error");
let sigstart = datum_length - 64;
let value = &recevied_datum[32..sigstart];
let value_slice = value.to_vec();
let signature: [u8; 32] = recevied_datum[sigstart..datum_length]
.try_into()
.expect("Taille incorrecte");
let datum_type = value_slice[0];
match datum_type {
CHUNK => {
tree.data.insert(
hash_name,
MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
);
}
DIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.to_vec(),
content_hash: hash,
});
}
let current = DirectoryNode::new(dir_entries);
match current {
Ok(current_node) => {
tree.data
.insert(hash_name, MerkleNode::Directory(current_node));
}
Err(e) => {
println!("{}", e);
}
}
}
BIG => {
let chlidren: Vec<NodeHash> = Vec::new();
tree.data.insert(
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: chlidren,
}),
);
}
BIGDIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.to_vec(),
content_hash: hash,
});
}
let current = BigDirectoryNode::new(dir_entries);
match current {
Ok(current_node) => {
tree.data
.insert(hash_name, MerkleNode::BigDirectory(current_node));
}
Err(e) => {
println!("{}", e);
}
}
}
_ => {}
}
}
fn parse_received_datum(recevied_datum: Vec<u8>) {}

View File

@@ -12,21 +12,17 @@ use crate::{
cryptographic_signature::CryptographicSignature,
message_handling::EventType,
messages_channels::{MultipleSenders, start_receving_thread},
messages_structure::{ROOTREQUEST, construct_message},
peers_refresh::HandshakeHistory,
registration::{
get_socket_address, parse_addresses, perform_handshake, register_with_the_server,
},
messages_structure::{NATTRAVERSALREQUEST, NATTRAVERSALREQUEST2, construct_message},
registration::{parse_addresses, register_ip_addresses, register_with_the_server},
server_communication::{generate_id, get_peer_list},
};
use std::{
fmt,
sync::{Arc, Mutex},
io::Error,
net::{Ipv4Addr, UdpSocket},
};
use std::{
io::Error,
net::{SocketAddr, UdpSocket},
str::FromStr,
net::SocketAddr,
sync::{Arc, Mutex},
};
pub struct P2PSharedData {
@@ -35,9 +31,11 @@ pub struct P2PSharedData {
shared_messageslist: Arc<Mutex<HashMap<i32, EventType>>>,
shared_senders: Arc<MultipleSenders>,
server_name: Arc<Mutex<String>>,
handshake_peers: Arc<HandshakeHistory>,
}
use bytes::Bytes;
use p256::pkcs8::der::pem::Base64Encoder;
impl P2PSharedData {
pub fn new(
username: String,
@@ -54,14 +52,12 @@ impl P2PSharedData {
let senders = MultipleSenders::new(1, &shared_socket, cmd_tx);
let shared_senders = Arc::new(senders);
let server_name = Arc::new(Mutex::new("".to_string()));
let handhsake_peers = Arc::new(HandshakeHistory::new());
Ok(P2PSharedData {
shared_socket: shared_socket,
shared_cryptopair: shared_cryptopair,
shared_messageslist: shared_messageslist,
shared_senders: shared_senders,
server_name: server_name,
handshake_peers: handhsake_peers,
})
}
pub fn socket(&self) -> Arc<UdpSocket> {
@@ -92,9 +88,6 @@ impl P2PSharedData {
pub fn cryptopair_ref(&self) -> &CryptographicSignature {
&*self.shared_cryptopair
}
pub fn handshake_ref(&self) -> &HandshakeHistory {
&*self.handshake_peers
}
pub fn messages_list_ref(&self) -> &Mutex<HashMap<i32, EventType>> {
&*self.shared_messageslist
@@ -116,15 +109,14 @@ pub enum NetworkCommand {
ServerHandshake(String, String), // ServerName
FetchPeerList(String), // ServerIP
RegisterAsPeer(String),
Ping(),
ConnectPeer(String), // IP:PORT
RequestFileTree(String), // peer_id
Ping(String),
NatTraversal(String, String),
ConnectPeer((String, bool)), // IP:PORT
RequestFileTree(String), // peer_id
RequestDirectoryContent(String, String),
RequestChunk(String, String),
Disconnect(),
ResetServerPeer(),
Discover(String, String, String),
GetChildren(String, String),
// ...
}
@@ -135,10 +127,10 @@ pub enum NetworkEvent {
Disconnected(),
Error(String),
PeerConnected(String),
PeerListUpdated(Vec<String>),
PeerListUpdated(Vec<(String, bool)>),
FileTreeReceived(String, Vec<MerkleNode>), // peer_id, content
DataReceived(String, MerkleNode),
FileTreeRootReceived(String, NodeHash),
FileTreeRootReceived(String, String),
HandshakeFailed(),
ServerHandshakeFailed(String),
// ...
@@ -173,8 +165,6 @@ pub fn start_p2p_executor(
// Use tokio to spawn the asynchronous networking logic
tokio::task::spawn(async move {
// P2P/Networking Setup goes here
let handshake_history = Arc::new(Mutex::new(HandshakeHistory::new()));
let handshake_clone = handshake_history.clone();
println!("Network executor started.");
@@ -184,18 +174,38 @@ pub fn start_p2p_executor(
if let Ok(cmd) = cmd_rx.try_recv() {
match cmd {
NetworkCommand::ServerHandshake(username, ip) => {
println!("server handshake called");
if let Some(sd) = shared_data.as_ref() {
start_receving_thread(sd, event_tx.clone(), &handshake_clone);
let res =
perform_handshake(&sd, username, ip, event_tx.clone(), true).await;
} else {
println!("no shared data");
println!("username:{}, ip:{}", username, ip);
let server_addr_query = get_socket_address(username.clone(), ip);
match server_addr_query.await {
Some(server_address) => {
sd.set_servername(username);
// first: &SocketAddr
start_receving_thread(
sd,
server_address, // copie le SocketAddr (implémente Copy pour SocketAddr)
event_tx.clone(), //
);
register_ip_addresses(
sd.cryptopair_ref(),
server_address.to_string(),
sd.senders_ref(),
sd.messages_list_ref(),
generate_id(),
);
}
None => {
let err_msg =
format!("failed to retreive socket address").to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
}
}
NetworkCommand::ConnectPeer(addr) => {
NetworkCommand::ConnectPeer((username, connected)) => {
println!("[Network] ConnectPeer() called");
println!("[Network] Attempting to connect to: {}", addr);
println!("[Network] Attempting to connect to: {}", username);
// Network logic to connect...
// If successful, send an event back:
// event_tx.send(NetworkEvent::PeerConnected(addr)).unwrap();
@@ -203,56 +213,6 @@ pub fn start_p2p_executor(
NetworkCommand::RequestFileTree(_) => {
println!("[Network] RequestFileTree() called");
}
NetworkCommand::Discover(username, hash, ip) => {
// envoie un handshake au peer, puis un root request
if let Some(sd) = shared_data.as_ref() {
let res = {
let m = handshake_clone.lock().unwrap();
m.get_peer_info_username(username.clone()).cloned()
};
match res {
Some(peerinfo) => {
// envoyer un root request
let rootrequest = construct_message(
ROOTREQUEST,
Vec::new(),
generate_id(),
sd.cryptopair_ref(),
);
match rootrequest {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref().send_via(
0,
resp_msg,
peerinfo.ip.to_string(),
false,
sd.messages_list_ref(),
);
}
}
}
None => {
// envoyer un handshake
let res = perform_handshake(
&sd,
username,
ip,
event_tx.clone(),
false,
)
.await;
}
}
} else {
println!("no shared data");
}
}
NetworkCommand::GetChildren(username, hash) => {
// envoie un datum request au peer
}
NetworkCommand::RequestDirectoryContent(_, _) => {
println!("[Network] RequestDirectoryContent() called");
}
@@ -308,11 +268,11 @@ pub fn start_p2p_executor(
match get_peer_list(ip).await {
Ok(body) => match String::from_utf8(body.to_vec()) {
Ok(peers_list) => {
let mut peers: Vec<String> = Vec::new();
let mut peers: Vec<(String, bool)> = Vec::new();
let mut current = String::new();
for i in peers_list.chars() {
if i == '\n' {
peers.push(current.clone());
peers.push((current.clone(), false));
current.clear();
} else {
current.push(i);
@@ -333,7 +293,7 @@ pub fn start_p2p_executor(
NetworkCommand::RegisterAsPeer(_) => {
println!("[Network] RegisterAsPeer() called");
}
NetworkCommand::Ping() => {
NetworkCommand::Ping(String) => {
println!("[Network] Ping() called");
}
NetworkCommand::Disconnect() => {
@@ -352,6 +312,53 @@ pub fn start_p2p_executor(
println!("no p2p data");
}
}
NetworkCommand::NatTraversal(username, ip) => {
if let Some(sd) = shared_data.as_ref() {
println!("username:{}, ip:{}", username, ip);
// user server to send nattraversal request
let server_addr_query =
get_socket_address(sd.servername().clone(), ip.clone());
let peer_addr_query = get_socket_address(username.clone(), ip.clone());
match server_addr_query.await {
Some(server_addr) => match peer_addr_query.await {
Some(peer_addr) => {
let payload =
parse_pack(peer_addr.clone().to_string().as_str())
.expect("couldnt create payload");
print!("{:?}", payload.clone());
let natreq = construct_message(
NATTRAVERSALREQUEST,
payload.clone().to_vec(),
generate_id(),
&sd.cryptopair(),
);
sd.senders_ref().send_via(
0,
natreq.expect(
"couldnt construct message nattraversalrequest2",
),
server_addr.to_string(),
false,
);
}
None => {
let err_msg = format!("failed to retreive socket address")
.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
},
None => {
let err_msg =
format!("failed to retreive socket address").to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
}
}
}
}
@@ -365,3 +372,50 @@ pub fn start_p2p_executor(
}
})
}
fn parse_pack(s: &str) -> Option<[u8; 6]> {
// split into "ip" and "port"
let mut parts = s.rsplitn(2, ':');
let port_str = parts.next()?;
let ip_str = parts.next()?; // if missing, invalid
let ip: Ipv4Addr = ip_str.parse().ok()?;
let port: u16 = port_str.parse().ok()?;
let octets = ip.octets();
let port_be = port.to_be_bytes();
Some([
octets[0], octets[1], octets[2], octets[3], port_be[0], port_be[1],
])
}
///
/// sends a get request to the server to get the socket address of the given peer
///
pub async fn get_socket_address(username: String, ip: String) -> Option<SocketAddr> {
let client = reqwest::Client::new();
let uri = format!("{}/peers/{}/addresses", ip, username);
let res = client.get(uri).send().await.expect("couldnt get response");
if res.status().is_success() {
println!("Successfully retreived the addresses.");
} else {
eprintln!(
"Failed to get the peers addresses from the server. Status: {}",
res.status()
);
}
let body: Bytes = res.bytes().await.expect("couldnt get bytes");
match String::from_utf8(body.to_vec()) {
Ok(s) => {
let addresses = parse_addresses(&s);
if let Some(first) = addresses.first() {
Some(first.clone())
} else {
None
}
}
Err(_) => None,
}
}

View File

@@ -1,13 +1,11 @@
use crate::{
NetworkEvent, NodeHash,
NetworkEvent,
cryptographic_signature::{
CryptographicSignature, get_peer_key, sign_message, verify_signature,
},
messages_channels::MultipleSenders,
messages_structure::construct_message,
peers_refresh::HandshakeHistory,
registration,
server_communication::generate_id,
};
use std::{collections::HashMap, net::SocketAddr};
use std::{
@@ -16,7 +14,9 @@ use std::{
};
pub enum EventType {
SendRootRequest,
ServerHelloReply,
PeerHelloReply,
PeerHello,
}
const ID: usize = 4;
@@ -42,12 +42,11 @@ pub fn handle_recevied_message(
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
recevied_message: &Vec<u8>,
crypto_pair: &CryptographicSignature,
//socket_addr: &SocketAddr,
socket_addr: &SocketAddr,
senders: &MultipleSenders,
server_name: &String,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr,
handhsake_history: &Arc<Mutex<HandshakeHistory>>,
) {
if recevied_message.len() < 4 {
return;
@@ -77,21 +76,14 @@ pub fn handle_recevied_message(
crypto_pair,
cmd_tx,
ip,
messages_list,
handhsake_history,
senders,
);
match resp {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
senders.send_via(
0,
resp_msg,
ip.to_string(),
is_resp_to_server_handshake,
messages_list,
);
senders.send_via(0, resp_msg, ip.to_string(), is_resp_to_server_handshake);
}
}
@@ -167,10 +159,8 @@ pub fn parse_message(
crypto_pair: &CryptographicSignature,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr,
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
handhsake_history_mutex: &Arc<Mutex<HandshakeHistory>>,
senders: &MultipleSenders,
) -> Option<Vec<u8>> {
let mut handhsake_history = handhsake_history_mutex.lock().unwrap();
let cmd_tx_clone = cmd_tx.clone();
let id_bytes: [u8; 4] = received_message[0..ID]
@@ -184,29 +174,20 @@ pub fn parse_message(
.expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes) as usize;
// verify signature
match msgtype {
HELLO | HELLOREPLY | NODATUM | NATTRAVERSALREQUEST | NATTRAVERSALREQUEST2 => {
HELLO | HELLOREPLY | ROOTREPLY | NODATUM | NATTRAVERSALREQUEST | NATTRAVERSALREQUEST2 => {
let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength);
let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let received_username = String::from_utf8(received_name.to_vec());
match received_username {
Ok(username) => {
let peer_pubkey =
match handhsake_history.get_peer_info_username(username.clone()) {
Some(peerinfo) => peerinfo.pubkey,
_ => tokio::runtime::Runtime::new()
.unwrap()
.block_on(get_peer_key(&username))
.expect("failed to retrieve public key"),
};
match msgtype {
HELLOREPLY => {
handhsake_history.add_new_handshake(peer_pubkey, "".to_string(), ip);
}
_ => {}
}
let peer_pubkey = tokio::runtime::Runtime::new()
.unwrap()
.block_on(get_peer_key(&username))
.expect("failed to retrieve public key");
let signature: [u8; SIGNATURE] = received_message
[LENGTH + msg_length..LENGTH + msg_length + SIGNATURE]
.try_into()
@@ -225,22 +206,6 @@ pub fn parse_message(
}
}
}
ROOTREPLY => {
let ilength = u16::from_be_bytes(length_bytes);
println!("name received length: {}", ilength);
if let Some(peerinfo) = handhsake_history.get_peer_info_ip(ip.to_string()) {
if !verify_signature(peerinfo.pubkey, &received_message) {
println!(
"incorrect signature from given peer: {}, ignoring message of type {} with id {}",
&peerinfo.username, received_message[ID], id
);
return None;
} else {
println!("signature verified");
}
}
}
_ => {}
}
@@ -258,6 +223,48 @@ pub fn parse_message(
//
// rien ?
// si NATTRAVERSALREQUEST alors
NATTRAVERSALREQUEST => {
// send ok & send nattraversalrequest2 to peer
constructed_message = construct_message(OK, Vec::new(), id, crypto_pair);
let ilength = u16::from_be_bytes(length_bytes);
let received_address =
&received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let address = String::from_utf8(received_address.to_vec()).expect("wrong name");
let natreq2 = construct_message(
NATTRAVERSALREQUEST2,
ip.to_string().into_bytes(),
id,
crypto_pair,
);
senders.send_via(
0,
natreq2.expect("couldnt construct message nattraversalrequest2"),
address,
false,
);
}
NATTRAVERSALREQUEST2 => {
// send ok & send ping to peer
constructed_message = construct_message(OK, Vec::new(), id, crypto_pair);
let ilength = u16::from_be_bytes(length_bytes);
let received_address =
&received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let address = String::from_utf8(received_address.to_vec()).expect("wrong name");
let pingreq = construct_message(PING, Vec::new(), id, crypto_pair);
senders.send_via(
0,
pingreq.expect("couldnt construct message ping request"),
address,
false,
);
}
//
// ERROR
//
@@ -291,40 +298,7 @@ pub fn parse_message(
//
//
// ajoute a la liste des peers handshake
HELLOREPLY => {
// ajoute l'username a la liste des peers handshake
let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH]
.try_into()
.expect("incorrect size"),
);
let received_username =
&received_message[LENGTH + EXTENSIONS..LENGTH + received_length as usize];
handhsake_history.update_peer_info(
ip.to_string(),
String::from_utf8(received_username.to_vec()).expect("invalid conversion"),
);
// verifie s'il faut renvoyer un root request
let guard = messages_list.lock().expect("Échec du verrouillage");
let res = guard.get(&id);
match res {
Some(ev) => {
match ev {
EventType::SendRootRequest => {
// envoyer la root request
let rootrequest = construct_message(
ROOTREQUEST,
Vec::new(),
generate_id(),
crypto_pair,
);
return rootrequest;
}
}
}
None => {}
}
}
HELLOREPLY => {}
//
// ROOTREQUEST
//
@@ -332,26 +306,7 @@ pub fn parse_message(
//
// ROOTREPLY
//
ROOTREPLY => {
// recuperer le pseudo du peers ayant repondu
let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string());
match peers_exist {
Some(peerinfo) => {
// envoyer le hash a la gui
let received_hash: NodeHash = received_message[LENGTH..(32 + LENGTH)]
.try_into()
.expect("incorrect size");
let res = cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived(
peerinfo.username.clone(),
received_hash,
));
println!("file tree sent")
}
None => {
eprintln!("no peers found");
}
}
}
// envoie un datum request
//
// DATUMREQUEST
//
@@ -423,6 +378,6 @@ pub fn parse_message(
//
// envoie OK à S puis envoie un ping à S
_ => return None,
};
}
constructed_message
}

View File

@@ -2,7 +2,6 @@ use crate::P2PSharedData;
use crate::cryptographic_signature::CryptographicSignature;
use crate::message_handling::EventType;
use crate::message_handling::handle_recevied_message;
use crate::peers_refresh::HandshakeHistory;
use std::collections::HashMap;
use std::net::SocketAddr;
use std::net::UdpSocket;
@@ -22,9 +21,9 @@ pub struct MultipleSenders {
}
pub struct Message {
pub payload: Vec<u8>,
pub address: String,
pub is_resp_to_server_handshake: bool,
payload: Vec<u8>,
address: String,
is_resp_to_server_handshake: bool,
}
struct RetryMessage {
@@ -206,74 +205,64 @@ impl MultipleSenders {
data: Vec<u8>,
remote_addr: String,
is_resp_to_server_handshake: bool,
messages_list: &Mutex<HashMap<i32, EventType>>,
) {
println!(
"is_resp_to_server_handshake {}",
is_resp_to_server_handshake
);
let msg_to_send = Message {
payload: data.clone(),
address: remote_addr,
is_resp_to_server_handshake,
};
if let Some(sender) = self.senders.get(channel_idx) {
let _ = sender.send(msg_to_send);
}
if !is_resp_to_server_handshake {
let mut guard = messages_list.lock().unwrap();
let message_id: [u8; 4] = data[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
guard.insert(id, EventType::SendRootRequest);
let _ = sender.send(Message {
payload: data,
address: remote_addr,
is_resp_to_server_handshake,
});
}
}
/*pub fn start_receving_thread(
socket: &Arc<UdpSocket>,
messages_list: &Arc<HashMap<i32, EventType>>,
crypto_pair: &Arc<CryptographicSignature>,
socket_addr: SocketAddr,
senders: &Arc<MultipleSenders>,
) {
let sock_clone = Arc::clone(socket);
let cryptopair_clone = Arc::clone(crypto_pair);
let senders_clone = Arc::clone(senders);
let messages_clone = Arc::clone(messages_list);
thread::spawn(move || {
let mut buf = [0u8; 1024];
loop {
match sock_clone.recv_from(&mut buf) {
Ok((amt, src)) => {
handle_recevied_message(
&messages_clone,
&buf.to_vec(),
&cryptopair_clone,
&socket_addr,
&senders_clone,
);
println!("Reçu {} octets de {}: {:?}", amt, src, &buf[..amt]);
}
Err(e) => eprintln!("Erreur de réception: {}", e),
}
}
});
}*/
}
/*pub fn start_receving_thread(
socket: &Arc<UdpSocket>,
messages_list: &Arc<HashMap<i32, EventType>>,
crypto_pair: &Arc<CryptographicSignature>,
socket_addr: SocketAddr,
senders: &Arc<MultipleSenders>,
) {
let sock_clone = Arc::clone(socket);
let cryptopair_clone = Arc::clone(crypto_pair);
let senders_clone = Arc::clone(senders);
let messages_clone = Arc::clone(messages_list);
thread::spawn(move || {
let mut buf = [0u8; 1024];
loop {
match sock_clone.recv_from(&mut buf) {
Ok((amt, src)) => {
handle_recevied_message(
&messages_clone,
&buf.to_vec(),
&cryptopair_clone,
&socket_addr,
&senders_clone,
);
println!("Reçu {} octets de {}: {:?}", amt, src, &buf[..amt]);
}
Err(e) => eprintln!("Erreur de réception: {}", e),
}
}
});
}*/
pub fn start_receving_thread(
shared_data: &P2PSharedData,
socket_addr: SocketAddr,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
handshake_history: &Arc<Mutex<HandshakeHistory>>,
) {
let sock_clone = shared_data.socket();
let cryptopair_clone = shared_data.cryptopair();
let senders_clone = shared_data.senders();
let messages_clone = shared_data.messages_list();
let servername_clone = shared_data.servername();
let handshake_clone = handshake_history.clone();
thread::spawn(move || {
let mut buf = [0u8; 1024];
loop {
@@ -286,11 +275,11 @@ pub fn start_receving_thread(
&messages_clone,
&received_data,
&cryptopair_clone,
&socket_addr,
&senders_clone,
&servername_clone,
cmd_tx.clone(),
src,
&handshake_clone,
);
}
Err(e) => eprintln!("Erreur de réception: {}", e),

View File

@@ -1,7 +1,4 @@
use crate::{
cryptographic_signature::{CryptographicSignature, sign_message},
server_communication::generate_id,
};
use crate::cryptographic_signature::{CryptographicSignature, sign_message};
const ID: usize = 4;
const TYPE: usize = 5;
@@ -9,18 +6,18 @@ const LENGTH: usize = 7;
const EXTENSIONS: usize = 4;
const SIGNATURE: usize = 64;
const PING: u8 = 0;
const OK: u8 = 128;
const ERROR: u8 = 129;
const HELLO: u8 = 1;
const HELLOREPLY: u8 = 130;
pub const ROOTREQUEST: u8 = 2;
const ROOTREPLY: u8 = 131;
const DATUMREQUEST: u8 = 3;
const NODATUM: u8 = 133;
const DATUM: u8 = 132;
const NATTRAVERSALREQUEST: u8 = 4;
const NATTRAVERSALREQUEST2: u8 = 5;
pub(crate) const PING: u8 = 0;
pub(crate) const OK: u8 = 128;
pub(crate) const ERROR: u8 = 129;
pub(crate) const HELLO: u8 = 1;
pub(crate) const HELLOREPLY: u8 = 130;
pub(crate) const ROOTREQUEST: u8 = 2;
pub(crate) const ROOTREPLY: u8 = 131;
pub(crate) const DATUMREQUEST: u8 = 3;
pub(crate) const NODATUM: u8 = 133;
pub(crate) const DATUM: u8 = 132;
pub(crate) const NATTRAVERSALREQUEST: u8 = 4;
pub(crate) const NATTRAVERSALREQUEST2: u8 = 5;
pub fn construct_message(
msgtype: u8,
@@ -46,11 +43,11 @@ pub fn construct_message(
let signature = sign_message(crypto_pair, &message);
return Some(signature);
}
PING | OK | ROOTREQUEST => {
PING | OK => {
message.extend_from_slice(&0u16.to_be_bytes());
return Some(message);
}
ERROR | DATUMREQUEST => {
ERROR | ROOTREQUEST | DATUMREQUEST => {
message.extend_from_slice(&payload.len().to_be_bytes());
message.extend_from_slice(&payload);
return Some(message);
@@ -58,8 +55,8 @@ pub fn construct_message(
ROOTREPLY | NODATUM | DATUM | NATTRAVERSALREQUEST => {
message.extend_from_slice(&payload.len().to_be_bytes());
message.extend_from_slice(&payload);
let signature = sign_message(crypto_pair, &message);
message.extend_from_slice(&signature);
//let signature = sign_message(crypto_pair, &message);
//message.extend_from_slice(&signature);
return Some(message);
}
@@ -67,3 +64,176 @@ pub fn construct_message(
}
None
}
pub struct UDPMessage {
id: u32,
msg_type: u8,
length: u16,
body: Vec<u8>,
signature: Vec<u8>,
}
pub struct HandshakeMessage {
pub id: u32,
msg_type: u8,
length: u16,
extensions: u32,
pub name: Vec<u8>,
pub signature: Vec<u8>,
}
pub struct NatTraversal {}
impl UDPMessage {
pub fn ping(id: u32) -> UDPMessage {
UDPMessage {
id: id,
msg_type: 0,
length: 0,
body: vec![0; 985],
signature: vec![0; 32],
}
}
pub fn error(id: u32) -> UDPMessage {
UDPMessage {
id: id,
msg_type: 129,
length: 0,
body: vec![0; 985],
signature: vec![0; 32],
}
}
pub fn parse(received_message: Vec<u8>) -> UDPMessage {
let id_bytes: [u8; 4] = received_message[0..4]
.try_into()
.expect("Taille incorrecte");
let length_bytes: [u8; 2] = received_message[5..7]
.try_into()
.expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes);
let name_bytes = &received_message[7..msg_length as usize + 8];
let signature_bytes =
&received_message[msg_length as usize + 8..msg_length as usize + 9 + 32];
UDPMessage {
id: u32::from_be_bytes(id_bytes),
msg_type: received_message[4],
length: u16::from_be_bytes(length_bytes),
body: name_bytes.to_vec(),
signature: signature_bytes.to_vec(),
}
}
pub fn display(&self) {
println!("ID: {:?}", self.id);
println!("Message Type: {}", self.msg_type);
println!("Length: {:?}", self.length);
let good_length = usize::min(self.length as usize, 985);
println!("name: {:?}", &self.body[..good_length]);
println!("Signature: {:?}", self.signature);
}
}
impl HandshakeMessage {
pub fn display(&self) {
println!("ID: {:?}", self.id);
println!("Message Type: {}", self.msg_type);
println!("Length: {:?}", self.length);
println!("extensions: {:?}", self.extensions);
println!("name: {:?}", &self.name[..(self.length - 4) as usize]);
println!("Signature: {:?}", self.signature);
}
pub fn hello(id: u32, length: u16, username: String) -> HandshakeMessage {
let name_vec = username.trim_end_matches(char::from(0)).as_bytes().to_vec();
HandshakeMessage {
id: id,
msg_type: 1,
length: length,
extensions: 0,
name: name_vec,
signature: vec![0; 64],
}
}
pub fn helloReply(id: u32, length: u16, username: String) -> HandshakeMessage {
let name_vec = username.trim_end_matches(char::from(0)).as_bytes().to_vec();
HandshakeMessage {
id: id,
msg_type: 130,
length: length,
extensions: 0,
name: name_vec,
signature: vec![0; 64],
}
}
pub fn serialize(&self) -> Vec<u8> {
let mut out = Vec::with_capacity(4 + 1 + 2 + 4 + self.name.len() + self.signature.len());
// id: u32 little-endian
out.extend_from_slice(&self.id.to_be_bytes());
// msg_type: u8
out.push(self.msg_type);
out.extend_from_slice(&self.length.to_be_bytes());
out.extend_from_slice(&self.extensions.to_be_bytes());
out.extend_from_slice(&self.name);
out.extend_from_slice(&self.signature);
out
}
pub fn parse(received_message: Vec<u8>) -> HandshakeMessage {
let id_bytes: [u8; 4] = received_message[0..4]
.try_into()
.expect("Taille incorrecte");
let length_bytes: [u8; 2] = received_message[5..7]
.try_into()
.expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes);
let extensions_bytes: [u8; 4] = received_message[7..11]
.try_into()
.expect("Taille incorrecte");
let name_bytes = &received_message[11..(11 + msg_length - 4) as usize];
let signature_bytes =
&received_message[(11 + msg_length - 4) as usize..(11 + msg_length - 4 + 64) as usize];
HandshakeMessage {
id: u32::from_be_bytes(id_bytes),
msg_type: received_message[4],
length: u16::from_be_bytes(length_bytes),
extensions: u32::from_be_bytes(extensions_bytes),
name: name_bytes.to_vec(),
signature: signature_bytes.to_vec(),
}
}
}
#[cfg(test)]
mod tests {
// Note this useful idiom: importing names from outer (for mod tests) scope.
use super::*;
/// creates an handshake message
#[tokio::test]
async fn creating_handshake_msg() {
let username = String::from("charlie_kirk");
let handshake = HandshakeMessage::hello(0, 12, username);
handshake.display();
}
/// parses an handshake message
#[tokio::test]
async fn parse_handshakemessage() {
let username = String::from("charlie_kirk");
let handshake = HandshakeMessage::hello(0, 12, username);
let ser = handshake.serialize();
let parsed = HandshakeMessage::parse(ser);
handshake.display();
parsed.display();
}
}

View File

@@ -3,7 +3,7 @@
use std::{
collections::{HashMap, VecDeque},
net::{AddrParseError, Ipv4Addr, SocketAddr},
net::{AddrParseError, SocketAddr},
ops::Add,
process::Command,
sync::{Arc, Mutex},
@@ -11,134 +11,54 @@ use std::{
time::{self, Duration, SystemTime},
};
use crate::NetworkEvent;
use crate::{
P2PSharedData, construct_message, generate_id, messages_structure,
registration::perform_handshake,
};
use crossbeam_channel::{Receiver, Sender};
use p256::ecdsa::VerifyingKey;
#[derive(Debug, Clone)]
pub struct PeerInfo {
pub username: String,
pub pubkey: VerifyingKey,
pub ip: SocketAddr,
username: String,
ip: SocketAddr,
}
pub struct HandshakeHistory {
//time_k_ip_v: HashMap<u64, u64>,
username_k_peerinfo_v: HashMap<String, PeerInfo>,
ip_k_peerinfo_v: HashMap<String, PeerInfo>,
time_k_ip_v: HashMap<u64, u64>,
ip_k_peerinfo_v: HashMap<u64, PeerInfo>,
}
impl HandshakeHistory {
pub fn new() -> HandshakeHistory {
HandshakeHistory {
//time_k_ip_v: HashMap::new(),
//ip_k_peerinfo_v: HashMap::new(),
username_k_peerinfo_v: HashMap::new(),
time_k_ip_v: HashMap::new(),
ip_k_peerinfo_v: HashMap::new(),
}
}
/*pub fn update_handshake(&self) {
let hashmap_shared = Arc::new(self.username_k_peerinfo_v);
pub fn update_handshake(&mut self) {
thread::spawn(move || {
let selfhashmap = hashmap_shared.clone();
let mut times_to_check = VecDeque::new();
let current_time: u64 = SystemTime::now()
.duration_since(time::UNIX_EPOCH)
.expect("system time before UNIX EPOCH")
.add(Duration::from_secs(10))
.as_secs();
// adds 10 seconds in the queue every 10 seconds
loop {
for peer in selfhashmap.keys() {
let peer_ip = selfhashmap.get(peer);
// send ping
}
let mut child = Command::new("sleep").arg("10").spawn().unwrap();
let mut child = Command::new("sleep").arg("9").spawn().unwrap();
let _result = child.wait().unwrap();
}
});
}*/
pub fn get_peer_info_username(&self, username: String) -> Option<&PeerInfo> {
self.username_k_peerinfo_v.get(&username).clone()
}
pub fn get_peer_info_ip(&self, ip: String) -> Option<&PeerInfo> {
self.ip_k_peerinfo_v.get(&ip).clone()
}
pub fn update_handshake(&self) {
// clone the map so we own it (cheap if PeerInfo is Clone)
let map_clone: Arc<HashMap<String, PeerInfo>> =
Arc::new(self.username_k_peerinfo_v.clone());
//let map_ip_clone: Arc<HashMap<String, PeerInfo>> = Arc::new(self.ip_k_peerinfo_v.clone());
let map_for_thread = Arc::clone(&map_clone);
thread::spawn(move || {
loop {
// Arc<HashMap<..>> derefs to &HashMap so these reads work
for (peer, peerinfo) in map_for_thread.iter() {
// send ping to peerinfo
for n in 0..9 {
// push 9 successive seconds
times_to_check.push_back(current_time + n);
// gestion d'erreur si verrou mort
}
thread::sleep(Duration::from_secs(10));
}
});
}
pub fn update_peer_info(&mut self, ip: String, username: String) {
let peerinfo = self.get_peer_info_ip(ip.clone());
match peerinfo {
Some(peer_info) => match ip.parse::<SocketAddr>() {
Ok(addr) => {
let new_peer_info = PeerInfo {
username: username.clone(),
pubkey: peer_info.pubkey,
ip: addr,
};
self.ip_k_peerinfo_v.insert(ip, new_peer_info.clone());
self.username_k_peerinfo_v.insert(username, new_peer_info);
}
Err(e) => eprintln!("parse error: {}", e),
},
None => {
eprintln!("no peer info found in hashmap")
}
}
}
pub fn add_new_handshake(&mut self, hash: VerifyingKey, username: String, ip: SocketAddr) {
let peerinfo = PeerInfo {
username: username.clone(),
pubkey: hash,
ip,
};
self.username_k_peerinfo_v
.insert(username, peerinfo.clone());
self.ip_k_peerinfo_v
.insert(ip.to_string(), peerinfo.clone());
}
}
pub fn perform_discover(
username: String,
hash: String,
sd: &P2PSharedData,
server_ip: String,
event_tx: Sender<NetworkEvent>,
) {
// first, sends handshake
if hash == "root" {
perform_handshake(sd, username, server_ip, event_tx, false);
/*if let Some(data) = construct_message(
messages_structure::ROOTREQUEST,
Vec::new(),
generate_id(),
sd.cryptopair_ref(),
) {
if let Some(peerinfo) = sd.handshake_ref() {
sd.senders_ref()
.send_via(0, data, peerinfo.ip.to_string(), false);
}
}*/
} else {
// envoyer un datum request
pub fn add_new_handshake(&mut self, hash: u64, username: String, ip: SocketAddr) {
let current_time: u64 = SystemTime::now()
.duration_since(time::UNIX_EPOCH)
.expect("system time before UNIX EPOCH")
.as_secs();
println!("time:{}", current_time);
/*self.time_k_hash_v.insert(current_time, hash);
self.hash_k_peerinfo_v
.insert(hash, PeerInfo { username, ip });*/
}
}
@@ -148,7 +68,10 @@ mod tests {
use super::*;
/*#[test]
///
/// creates a cryptographic signature
///
#[test]
fn creating_cryptographic_signature() {
let mut hh = HandshakeHistory::new();
hh.add_new_handshake(
@@ -156,5 +79,5 @@ mod tests {
"putain".to_string(),
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 1),
);
}*/
}
}

View File

@@ -1,14 +1,9 @@
use bytes::Bytes;
use getrandom::Error;
use crate::NetworkEvent;
use crate::P2PSharedData;
use crate::cryptographic_signature::{CryptographicSignature, formatPubKey, sign_message};
use crate::message_handling::EventType;
use crate::messages_channels::{Message, MultipleSenders};
use crate::messages_channels::MultipleSenders;
use crate::messages_structure::construct_message;
use crate::server_communication::generate_id;
use crossbeam_channel::{Receiver, Sender};
use std::collections::HashMap;
use std::net::SocketAddr;
use std::net::UdpSocket;
@@ -33,26 +28,6 @@ pub async fn register_with_the_server(
Ok(())
}
///
/// sends a get request to the server to get the socket address of the given peer
///
pub async fn get_socket_address(username: String, ip: String) -> Result<Bytes, reqwest::Error> {
let client = reqwest::Client::new();
let uri = format!("{}/peers/{}/addresses", ip, username);
let res = client.get(uri).send().await?;
if res.status().is_success() {
println!("Successfully retreived the addresses.");
} else {
eprintln!(
"Failed to get the peers addresses from the server. Status: {}",
res.status()
);
}
let body: Bytes = res.bytes().await?;
Ok(body)
}
pub fn parse_addresses(input: &String) -> Vec<SocketAddr> {
let mut addrs = Vec::new();
for line in input.lines() {
@@ -70,67 +45,23 @@ pub fn parse_addresses(input: &String) -> Vec<SocketAddr> {
///
/// registers the IP addresses by sending a Hello request to the server.
///
pub async fn perform_handshake(
sd: &P2PSharedData,
username: String,
ip: String,
event_tx: Sender<NetworkEvent>,
is_server_handshake: bool,
pub fn register_ip_addresses(
crypto_pair: &CryptographicSignature,
server_uri: String,
senders: &MultipleSenders,
messages_list: &Mutex<HashMap<i32, EventType>>,
id: i32,
) {
println!("username: {}, ip: {}", username.clone(), ip.clone());
let crypto_pair = sd.cryptopair_ref();
let senders = sd.senders_ref();
let messages_list = sd.messages_list_ref();
let id = generate_id();
let server_addr_query = get_socket_address(username.clone(), ip.clone());
match server_addr_query.await {
Ok(sockaddr_bytes) => {
match String::from_utf8(sockaddr_bytes.to_vec()) {
Ok(s) => {
let addresses = parse_addresses(&s);
if let Some(first) = addresses.first() {
sd.set_servername(username);
// first: &SocketAddr
let mut payload = Vec::new();
payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let hello_handshake = construct_message(1, payload, id, crypto_pair);
match hello_handshake {
Some(handshake_message) => {
senders.send_via(
0,
handshake_message,
first.to_string(),
is_server_handshake,
messages_list,
);
}
None => {}
}
//let res = event_tx
// .send(NetworkEvent::());
} else {
//let res = event_tx.send(NetworkEvent::Error());
let err_msg =
format!("no valid socket addresses found in: {}", s).to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
Err(e) => {
//let res = event_tx.send(NetworkEvent::Error());
let err_msg =
format!("invalid UTF-8 in socket address bytes: {}", e).to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
}
}
Err(e) => {
let err_msg = format!("failed to retreive socket address: {}", e).to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
let mut payload = Vec::new();
payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let hello_handshake = construct_message(1, payload, id, crypto_pair);
match hello_handshake {
Some(handshake_message) => {
senders.send_via(0, handshake_message, server_uri, false);
}
None => {}
}
/*let mut list = messages_list.lock().expect("Failed to lock messages_list");
match list.get(&id) {
Some(_) => {

41
todo.md
View File

@@ -1,13 +1,32 @@
# Todo :
# Todo
## peer discovery
## handshake
# Todo
## peer discovery
- get rsquest to the uri /peers/
## registration with the server
- generation of the cryptographic key OK
- put request to the uri (check if the peer is already connected) OK
- udp handshakes OK
- get request to the uri /peers/key to get the public key of a peer OK
- get request to the uri /peers/key/addresses OK
## handshake
- handshake structure OK
- 5min timeout after handshake
- matain connection every 4 min
## data transfer
- request structure
- root/root reply structure
- datum/nodatum and datum structures
@@ -15,7 +34,16 @@
- setting in gui to act as a relay
- chunk, directory, big, bigdirectory structures
## fonctionnalités application :
## fonctionnalités application
## nat traversal
- make hello and helloreply messages set the first extension bit to announce that peer is available for nat traversal
- implement actual nat traversal requests
- implement nat traversal :
- if hello/helloreply doesnt work with a peer, find a peer that supports nat traversal (server in priority) then begin protocol
fonctionnalités :
rechercher les fichiers d'un pair
telechargement des fichiers
@@ -25,13 +53,11 @@ choisir le nombre de canaux
handshake server DOING
se deconnecter du réseau DOING
## autre :
## autre
socket ipv6
# FAIT :
# FAIT
- choisir un pseudo OK
- get rsquest to the uri /peers/ OK
@@ -45,4 +71,3 @@ socket ipv6
- generer une clé publique OK
- verifier signature OK
- 2 channels -> un pour envoyer et un pour recevoir OK