use rand::{Rng, rng}; use sha2::{Digest, Sha256}; use std::collections::HashMap; use std::hash::{DefaultHasher, Hash, Hasher}; use std::fs::{File, OpenOptions, create_dir}; use std::io::{self, Write}; use std::env; // --- Constants --- pub const MAX_CHUNK_DATA_SIZE: usize = 1024; pub const MAX_DIRECTORY_ENTRIES: usize = 16; pub const MAX_BIG_CHILDREN: usize = 32; pub const MIN_BIG_CHILDREN: usize = 2; pub const FILENAME_HASH_SIZE: usize = 32; pub const DIRECTORY_ENTRY_SIZE: usize = FILENAME_HASH_SIZE * 2; // 64 bytes pub type NodeHash = [u8; FILENAME_HASH_SIZE]; pub fn node_hash_to_hex_string(hash: &NodeHash) -> String { hash.iter().map(|b| format!("{:02x}", b)).collect() } #[repr(u8)] #[derive(Debug, Clone)] pub enum MerkleNode { // up to 1024 bytes of raw data. Chunk(ChunkNode) = 0, // 0 to 16 directory entries. Directory(DirectoryNode) = 1, // list of 2 to 32 hashes pointing to Chunk or Big nodes. Big(BigNode) = 3, // list of 2 to 32 hashes pointing to Directory or BigDirectory nodes. BigDirectory(BigDirectoryNode) = 4, } #[derive(Debug, Clone)] pub struct MerkleTree { pub data: HashMap, pub root: NodeHash, } impl MerkleTree { pub fn new(data: HashMap, root: NodeHash) -> MerkleTree { MerkleTree { data, root } } } #[derive(Debug, Clone)] pub struct ChunkNode { pub data: Vec, } impl ChunkNode { pub fn new(data: Vec) -> Result { if data.len() > MAX_CHUNK_DATA_SIZE { return Err(format!("Chunk data exceeds {} bytes", data.len())); } Ok(ChunkNode { data }) } pub fn new_random() -> Self { let mut rng = rand::rng(); // Determine a random length between 1 and MAX_CHUNK_DATA_SIZE (inclusive). // Using +1 ensures the range is up to 1024. let random_len = rng.random_range(1..=MAX_CHUNK_DATA_SIZE); // Initialize a vector with the random length let mut data = vec![0u8; random_len]; // Fill the vector with random bytes rng.fill(&mut data[..]); // Since we generated the length based on MAX_CHUNK_DATA_SIZE, // this is guaranteed to be valid and doesn't need to return a Result. ChunkNode { data } } } // Helper struct #[derive(Debug, Clone)] pub struct DirectoryEntry { pub filename: [u8; FILENAME_HASH_SIZE], pub content_hash: NodeHash, } pub fn filename_to_string(filename: [u8; FILENAME_HASH_SIZE]) -> String { let end_index = filename .iter() .position(|&b| b == 0) .unwrap_or(FILENAME_HASH_SIZE); String::from_utf8_lossy(&filename[..end_index]).to_string() } #[derive(Debug, Clone)] pub struct DirectoryNode { pub entries: Vec, } impl DirectoryNode { pub fn new(entries: Vec) -> Result { if entries.len() > MAX_DIRECTORY_ENTRIES { return Err(format!("Directory exceeds {} bytes", entries.len())); } Ok(DirectoryNode { entries }) } } #[derive(Debug, Clone)] pub struct BigNode { pub children_hashes: Vec, } impl BigNode { pub fn new(children_hashes: Vec) -> Result { let n = children_hashes.len(); if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN { return Err(format!( "Big node must have between {} and {} children, found {}", MIN_BIG_CHILDREN, MAX_BIG_CHILDREN, n )); } Ok(BigNode { children_hashes }) } } #[derive(Debug, Clone)] pub struct BigDirectoryNode { pub children_hashes: Vec, // pub children_hashes: Vec, } impl BigDirectoryNode { pub fn new(children_hashes: Vec) -> Result { let n = children_hashes.len(); if n < MIN_BIG_CHILDREN || n > MAX_BIG_CHILDREN { return Err(format!( "BigDirectory node must have between {} and {} children, found {}", MIN_BIG_CHILDREN, MAX_BIG_CHILDREN, n )); } Ok(BigDirectoryNode { children_hashes }) } } impl MerkleNode { pub fn get_type_byte(&self) -> u8 { match self { MerkleNode::Chunk(_) => 0, MerkleNode::Directory(_) => 1, MerkleNode::Big(_) => 3, MerkleNode::BigDirectory(_) => 4, } } pub fn serialize(&self) -> Vec { let mut bytes = Vec::new(); bytes.push(self.get_type_byte()); match self { MerkleNode::Chunk(node) => { bytes.extend_from_slice(&node.data); } MerkleNode::Directory(node) => { for entry in &node.entries { bytes.extend_from_slice(&entry.filename); bytes.extend_from_slice(&entry.content_hash); } } MerkleNode::Big(node) => { for hash in &node.children_hashes { bytes.extend_from_slice(hash); } } MerkleNode::BigDirectory(node) => { for hash in &node.children_hashes { bytes.extend_from_slice(hash); } } } bytes } } fn hash(data: &[u8]) -> NodeHash { let root_hash = Sha256::digest(&data); println!("root hash: {:?}", root_hash); let res: NodeHash = root_hash.try_into().expect("incorrect size"); res /*let mut hasher = DefaultHasher::new(); data.hash(&mut hasher); let hash_u64 = hasher.finish(); let mut hash_array = [0u8; FILENAME_HASH_SIZE]; // Simple way to spread a 64-bit hash across 32 bytes for a unique-ish ID for i in 0..8 { hash_array[i] = (hash_u64 >> (i * 8)) as u8; } hash_array // The rest remains 0, satisfying the 32-byte requirement */ } fn generate_random_filename() -> [u8; FILENAME_HASH_SIZE] { let mut rng = rand::rng(); let mut filename_bytes = [0; FILENAME_HASH_SIZE]; // Generate a random length for the base name let name_len = rng.random_range(5..21); // Generate random alphanumeric characters for i in 0..name_len { let char_code = rng.random_range(97..123); // 'a' through 'z' if i < FILENAME_HASH_SIZE { filename_bytes[i] = char_code as u8; } } // Append a common extension let ext = if rng.random_bool(0.5) { ".txt" } else { ".dat" }; let ext_bytes = ext.as_bytes(); let start_index = name_len.min(FILENAME_HASH_SIZE - ext_bytes.len()); if start_index < FILENAME_HASH_SIZE { filename_bytes[start_index..(start_index + ext_bytes.len())].copy_from_slice(ext_bytes); } filename_bytes } fn generate_random_file_node( storage: &mut HashMap, ) -> Result { let mut rng = rng(); let is_big = rng.random_bool(0.2); // 20% chance of being a big file if !is_big { // Generate a simple Chunk Node let node = MerkleNode::Chunk(ChunkNode::new_random()); let hash = hash(&node.serialize()); storage.insert(hash, node); Ok(hash) } else { // Generate a Big Node (a file composed of chunks) let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(8)); // Limit complexity let mut children_hashes = Vec::with_capacity(num_children); for _ in 0..num_children { // Children must be Chunk or Big; for simplicity, we only generate Chunk children here. let chunk_node = MerkleNode::Chunk(ChunkNode::new_random()); let chunk_hash = hash(&chunk_node.serialize()); storage.insert(chunk_hash, chunk_node); children_hashes.push(chunk_hash); } let node = MerkleNode::Big(BigNode::new(children_hashes)?); let hash = hash(&node.serialize()); storage.insert(hash, node); Ok(hash) } } fn generate_random_directory_node( depth: u32, max_depth: u32, storage: &mut HashMap, ) -> Result { let mut rng = rng(); let current_depth = depth + 1; let is_big_dir = rng.random_bool(0.3) && current_depth < max_depth; if !is_big_dir || current_depth >= max_depth { // Generate a simple Directory Node (leaf level directory) let num_entries = rng.random_range(1..=MAX_DIRECTORY_ENTRIES.min(5)); // Limit directory size for testing let mut entries = Vec::with_capacity(num_entries); for _ in 0..num_entries { if rng.random_bool(0.7) { // 70% chance of creating a file (Chunk/Big) let file_hash = generate_random_file_node(storage)?; let entry = DirectoryEntry { filename: generate_random_filename(), content_hash: file_hash, }; entries.push(entry); } else if current_depth < max_depth { // 30% chance of creating a subdirectory let dir_hash = generate_random_directory_node(current_depth, max_depth, storage)?; // Create a basic directory entry name let mut filename_bytes = [0; 32]; let subdir_name = format!("dir_{}", current_depth); filename_bytes[..subdir_name.len()].copy_from_slice(subdir_name.as_bytes()); let entry = DirectoryEntry { filename: filename_bytes, content_hash: dir_hash, }; entries.push(entry); } } let node = MerkleNode::Directory(DirectoryNode::new(entries)?); let hash = hash(&node.serialize()); storage.insert(hash, node); Ok(hash) } else { // Generate a BigDirectory Node (internal directory structure) let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(4)); // Limit children count let mut children = Vec::with_capacity(num_children); for _ in 0..num_children { // Children must be Directory or BigDirectory let child_hash = generate_random_directory_node(current_depth, max_depth, storage)?; children.push(child_hash); } let node = MerkleNode::BigDirectory(BigDirectoryNode::new(children)?); let hash = hash(&node.serialize()); storage.insert(hash, node); Ok(hash) } } pub fn generate_random_tree( max_depth: u32, ) -> Result<(NodeHash, HashMap), String> { let mut storage = HashMap::new(); // Start tree generation from the root directory at depth 0 let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?; Ok((root_hash, storage)) } pub fn generate_base_tree() -> MerkleTree { let mut res = HashMap::new(); let bob_content = "where is bob".to_string().into_bytes(); let alice_content = "alice".to_string().into_bytes(); let oscar_content = "oscar is the opponent".to_string().into_bytes(); let mut children_nodes = Vec::new(); for i in 0..10 { let mut i_nodes = Vec::new(); for j in 0..10 { let node1 = MerkleNode::Chunk(ChunkNode::new(bob_content.clone()).unwrap()); let hash = hash(&node1.serialize()); i_nodes.push(hash); res.insert(hash, node1); } let bignode = MerkleNode::Big(BigNode::new(i_nodes).unwrap()); let hashbig = hash(&bignode.serialize()); children_nodes.push(hashbig); res.insert(hashbig, bignode); } let bignode = MerkleNode::Big(BigNode::new(children_nodes).unwrap()); let hashbig = hash(&bignode.serialize()); let node1 = MerkleNode::Chunk(ChunkNode::new(bob_content).unwrap()); let hash1 = hash(&node1.serialize()); let node2 = MerkleNode::Chunk(ChunkNode::new(alice_content).unwrap()); let hash2 = hash(&node2.serialize()); //res.insert(hash1, node1); //res.insert(hash2, node2); res.insert(hashbig, bignode); let node3 = MerkleNode::Chunk(ChunkNode::new(oscar_content).unwrap()); let hash3 = hash(&node3.serialize()); //res.insert(hash3, node3); let dir1 = MerkleNode::Directory(DirectoryNode { entries: [DirectoryEntry { filename: generate_random_filename(), content_hash: hash3, }] .to_vec(), }); let hash_dir1 = hash(&dir1.serialize()); //res.insert(hash_dir1, dir1); let root = MerkleNode::Directory(DirectoryNode { entries: [ DirectoryEntry { filename: generate_random_filename(), content_hash: hashbig, }, /*DirectoryEntry { filename: generate_random_filename(), content_hash: hash2, }, DirectoryEntry { filename: generate_random_filename(), content_hash: hash_dir1, },*/ ] .to_vec(), }); let root_hash = Sha256::digest(&root.serialize()); println!("root hash: {:?}", root_hash); res.insert(root_hash.try_into().expect("incorrect size"), root); MerkleTree::new(res, root_hash.try_into().expect("incorrect size")) } pub fn node_to_file(tree: &MerkleTree, node: &MerkleNode, path: String, i: u8) { match node.clone() { MerkleNode::Directory(dir) => { if i != 0 { let new_path = format!("{}/fold_{}", path.clone(), i); match create_dir(new_path.clone()) { Ok(_) => println!("Directory created successfully!"), Err(e) => println!("Failed to create directory: {}", e), } } for entry in dir.entries { // creer un fichier pour chaque entry if let Ok(filename_str) = String::from_utf8(entry.filename.to_vec()) { let new_name = format!("{}{}", path.clone(), remove_null_bytes(&filename_str)); println!("new_name: {}", new_name); let file = OpenOptions::new() .append(true) .create(true) .open(new_name.clone()); match file { Ok(mut fileok) => { if let Some(current) = tree.data.get(&entry.content_hash) { big_or_chunk_to_file(&tree, ¤t, &mut fileok); } } Err(e) => { eprintln!("error creaation file: {}", e); } } } } } MerkleNode::BigDirectory(bigdir) => { for entry in bigdir.children_hashes.iter() { if let Some(current) = tree.data.get(entry) { node_to_file(tree, current, path.clone(), i + 1); } } } _ => { eprintln!("invalid type of dir"); } } } pub fn remove_null_bytes(input: &str) -> String { input.chars().filter(|&c| c != '\0').collect() } pub fn big_or_chunk_to_file(tree: &MerkleTree, node: &MerkleNode, file: &mut File) { match node { MerkleNode::Big(big) => { for entry in big.children_hashes.iter() { if let Some(current) = tree.data.get(entry) { big_or_chunk_to_file(tree, current, file); } } } MerkleNode::Chunk(chunk) => { println!("wrote data"); let _ = file.write_all(&chunk.data); } _ => { println!("invalid type of file"); } } } #[cfg(test)] mod tests { use super::*; /// /// creates a cryptographic signature /// #[test] fn test_saving_tree() { if let Ok(current_dir) = env::current_dir() { println!("Current working directory: {:?}", current_dir); } println!("--------- tree test starts ------------"); match create_dir("../Download/") { Ok(_) => println!("Directory created successfully!"), Err(e) => println!("Failed to create directory: {}", e), } let tree = generate_base_tree(); println!("--------- test tree created ------------"); if let Some(root_node) = tree.data.get(&tree.root) { node_to_file(&tree, root_node, "../Download/".to_string(), 0); } } /*#[test] fn signing_message() { let username = String::from("gamixtreize"); let crypto_pair = CryptographicSignature::new(username.clone()); let handshake = HandshakeMessage::hello(0, 12, username); let ser = handshake.serialize(); let signed_message = sign_message(&crypto_pair, &ser); println!("unsigned_message: {:?}", ser); println!("signed_message: {:?}", signed_message); }*/ }