/** * Head of code common to all C targets **/ #include "beremiz.h" #include /* * Prototypes of functions provided by generated C softPLC **/ void config_run__(unsigned long tick); void config_init__(void); /* * Prototypes of functions provided by generated target C code * */ long long AtomicCompareExchange64(long long*, long long, long long); void __init_debug(void); void __cleanup_debug(void); /*void __retrieve_debug(void);*/ void __publish_debug(void); /* * Variables used by generated C softPLC and plugins **/ IEC_TIME __CURRENT_TIME; IEC_BOOL __DEBUG = 0; unsigned long __tick = 0; char *PLC_ID = NULL; /* * Variable generated by C softPLC and plugins **/ extern unsigned long greatest_tick_count__; /* Help to quit cleanly when init fail at a certain level */ static int init_level = 0; /* * Prototypes of functions exported by plugins **/ /* * Retrieve input variables, run PLC and publish output variables **/ void __run(void) { __tick++; if (greatest_tick_count__) __tick %= greatest_tick_count__; /*__retrieve_debug();*/ config_run__(__tick); __publish_debug(); } /* * Initialize variables according to PLC's default values, * and then init plugins with that values **/ int __init(int argc,char **argv) { int res = 0; init_level = 0; /* Effective tick time with 1ms default value */ if(!common_ticktime__) common_ticktime__ = 1000000; config_init__(); __init_debug(); return res; } /* * Calls plugin cleanup proc. **/ void __cleanup(void) { __cleanup_debug(); } void PLC_GetTime(IEC_TIME *CURRENT_TIME); void PLC_SetTimer(unsigned long long next, unsigned long long period); /** * Win32 specific code **/ #include #include #include #include #include long AtomicCompareExchange(long* atomicvar, long compared, long exchange) { return InterlockedCompareExchange(atomicvar, exchange, compared); } CRITICAL_SECTION Atomic64CS; long long AtomicCompareExchange64(long long* atomicvar, long long compared, long long exchange) { long long res; EnterCriticalSection(&Atomic64CS); res=*atomicvar; if(*atomicvar == compared){ *atomicvar = exchange; } LeaveCriticalSection(&Atomic64CS); return res; } struct timeb timetmp; void PLC_GetTime(IEC_TIME *CURRENT_TIME) { ftime(&timetmp); (*CURRENT_TIME).tv_sec = timetmp.time; (*CURRENT_TIME).tv_nsec = timetmp.millitm * 1000000; } HANDLE PLC_timer = NULL; void PLC_SetTimer(unsigned long long next, unsigned long long period) { LARGE_INTEGER liDueTime; /* arg 2 of SetWaitableTimer take 100 ns interval*/ liDueTime.QuadPart = next / (-100); if (!SetWaitableTimer(PLC_timer, &liDueTime, period<1000000?1:period/1000000, NULL, NULL, 0)) { printf("SetWaitableTimer failed (%d)\n", GetLastError()); } } int PLC_shutdown; int ForceSaveRetainReq(void) { return PLC_shutdown; } /* Variable used to stop plcloop thread */ void PlcLoop() { PLC_shutdown = 0; while(!PLC_shutdown) { if (WaitForSingleObject(PLC_timer, INFINITE) != WAIT_OBJECT_0){ PLC_shutdown = 1; break; } PLC_GetTime(&__CURRENT_TIME); __run(); } } HANDLE PLC_thread; HANDLE debug_sem; HANDLE debug_wait_sem; HANDLE python_sem; HANDLE python_wait_sem; #define maxval(a,b) ((a>b)?a:b) int startPLC(int argc,char **argv) { unsigned long thread_id = 0; BOOL tmp; debug_sem = CreateSemaphore( NULL, // default security attributes 1, // initial count 1, // maximum count NULL); // unnamed semaphore if (debug_sem == NULL) { printf("startPLC CreateSemaphore debug_sem error: %d\n", GetLastError()); return 1; } debug_wait_sem = CreateSemaphore( NULL, // default security attributes 0, // initial count 1, // maximum count NULL); // unnamed semaphore if (debug_wait_sem == NULL) { printf("startPLC CreateSemaphore debug_wait_sem error: %d\n", GetLastError()); return 1; } python_sem = CreateSemaphore( NULL, // default security attributes 1, // initial count 1, // maximum count NULL); // unnamed semaphore if (python_sem == NULL) { printf("startPLC CreateSemaphore python_sem error: %d\n", GetLastError()); return 1; } python_wait_sem = CreateSemaphore( NULL, // default security attributes 0, // initial count 1, // maximum count NULL); // unnamed semaphore if (python_wait_sem == NULL) { printf("startPLC CreateSemaphore python_wait_sem error: %d\n", GetLastError()); return 1; } /* Create a waitable timer */ timeBeginPeriod(1); PLC_timer = CreateWaitableTimer(NULL, FALSE, "WaitableTimer"); if(NULL == PLC_timer) { printf("CreateWaitableTimer failed (%d)\n", GetLastError()); return 1; } if( __init(argc,argv) == 0 ) { PLC_SetTimer(common_ticktime__,common_ticktime__); PLC_thread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)PlcLoop, NULL, 0, &thread_id); } else{ return 1; } return 0; } static unsigned long __debug_tick; int TryEnterDebugSection(void) { //printf("TryEnterDebugSection\n"); if(WaitForSingleObject(debug_sem, 0) == WAIT_OBJECT_0){ /* Only enter if debug active */ if(__DEBUG){ return 1; } ReleaseSemaphore(debug_sem, 1, NULL); } return 0; } void LeaveDebugSection(void) { ReleaseSemaphore(debug_sem, 1, NULL); //printf("LeaveDebugSection\n"); } int stopPLC() { PLC_shutdown = 1; // force last wakeup of PLC thread SetWaitableTimer(PLC_timer, 0, 0, NULL, NULL, 0); // wait end of PLC thread WaitForSingleObject(PLC_thread, INFINITE); __cleanup(); CloseHandle(PLC_timer); CloseHandle(debug_wait_sem); CloseHandle(debug_sem); CloseHandle(python_wait_sem); CloseHandle(python_sem); CloseHandle(PLC_thread); } /* from plc_debugger.c */ int WaitDebugData(unsigned long *tick) { DWORD res; res = WaitForSingleObject(debug_wait_sem, INFINITE); *tick = __debug_tick; /* Wait signal from PLC thread */ return res != WAIT_OBJECT_0; } /* Called by PLC thread when debug_publish finished * This is supposed to unlock debugger thread in WaitDebugData*/ void InitiateDebugTransfer() { /* remember tick */ __debug_tick = __tick; /* signal debugger thread it can read data */ ReleaseSemaphore(debug_wait_sem, 1, NULL); } int suspendDebug(int disable) { /* Prevent PLC to enter debug code */ WaitForSingleObject(debug_sem, INFINITE); __DEBUG = !disable; if(disable) ReleaseSemaphore(debug_sem, 1, NULL); return 0; } void resumeDebug() { __DEBUG = 1; /* Let PLC enter debug code */ ReleaseSemaphore(debug_sem, 1, NULL); } /* from plc_python.c */ int WaitPythonCommands(void) { /* Wait signal from PLC thread */ return WaitForSingleObject(python_wait_sem, INFINITE); } /* Called by PLC thread on each new python command*/ void UnBlockPythonCommands(void) { /* signal debugger thread it can read data */ ReleaseSemaphore(python_wait_sem, 1, NULL); } int TryLockPython(void) { return WaitForSingleObject(python_sem, 0) == WAIT_OBJECT_0; } void UnLockPython(void) { ReleaseSemaphore(python_sem, 1, NULL); } void LockPython(void) { WaitForSingleObject(python_sem, INFINITE); } static void __attribute__((constructor)) beremiz_dll_init(void) { InitializeCriticalSection(&Atomic64CS); } static void __attribute__((destructor)) beremiz_dll_destroy(void) { DeleteCriticalSection(&Atomic64CS); } struct RT_to_nRT_signal_s { HANDLE sem; }; typedef struct RT_to_nRT_signal_s RT_to_nRT_signal_t; #define _LogAndReturnNull(text) \ {\ char mstr[256] = text " for ";\ strncat(mstr, name, 255);\ LogMessage(LOG_CRITICAL, mstr, strlen(mstr));\ return NULL;\ } void *create_RT_to_nRT_signal(char* name){ RT_to_nRT_signal_t *sig = (RT_to_nRT_signal_t*)malloc(sizeof(RT_to_nRT_signal_t)); if(!sig) _LogAndReturnNull("Failed allocating memory for RT_to_nRT signal"); sig->sem = CreateSemaphore( NULL, // default security attributes 1, // initial count 1, // maximum count NULL); // unnamed semaphore if(sig->sem == NULL) { char mstr[256]; snprintf(mstr, 255, "startPLC CreateSemaphore %s error: %d\n", name, GetLastError()); LogMessage(LOG_CRITICAL, mstr, strlen(mstr)); return NULL; } return (void*)sig; } void delete_RT_to_nRT_signal(void* handle){ RT_to_nRT_signal_t *sig = (RT_to_nRT_signal_t*)handle; CloseHandle(python_sem); free(sig); } int wait_RT_to_nRT_signal(void* handle){ int ret; RT_to_nRT_signal_t *sig = (RT_to_nRT_signal_t*)handle; return WaitForSingleObject(sig->sem, INFINITE); } int unblock_RT_to_nRT_signal(void* handle){ RT_to_nRT_signal_t *sig = (RT_to_nRT_signal_t*)handle; return ReleaseSemaphore(sig->sem, 1, NULL); } void nRT_reschedule(void){ SwitchToThread(); } /* This file is part of Beremiz, a Integrated Development Environment for programming IEC 61131-3 automates supporting plcopen standard and CanFestival. See COPYING.runtime Copyright (C) 2018: Sergey Surkov Copyright (C) 2018: Andrey Skvortsov */ #ifndef HAVE_RETAIN #include #include #include #include "iec_types.h" int GetRetainSize(void); /* Retain buffer. */ FILE *retain_buffer; const char rb_file[] = "retain_buffer_file"; const char rb_file_bckp[] = "retain_buffer_file.bak"; /* Retain header struct. */ struct retain_info_t { uint32_t retain_size; uint32_t hash_size; uint8_t* hash; uint32_t header_offset; uint32_t header_crc; }; /* Init retain info structure. */ struct retain_info_t retain_info; /* CRC lookup table and initial state. */ static const uint32_t crc32_table[256] = { 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D, }; uint32_t retain_crc; /* Calculate CRC32 for len bytes from pointer buf with init starting value. */ uint32_t GenerateCRC32Sum(const void* buf, unsigned int len, uint32_t init) { uint32_t crc = ~init; unsigned char* current = (unsigned char*) buf; while (len--) crc = crc32_table[(crc ^ *current++) & 0xFF] ^ (crc >> 8); return ~crc; } /* Calc CRC32 for retain file byte by byte. */ int CheckFileCRC(FILE* file_buffer) { /* Set the magic constant for one-pass CRC calc according to ZIP CRC32. */ const uint32_t magic_number = 0x2144df1c; /* CRC initial state. */ uint32_t calc_crc32 = 0; char data_block = 0; while(!feof(file_buffer)){ if (fread(&data_block, sizeof(data_block), 1, file_buffer)) calc_crc32 = GenerateCRC32Sum(&data_block, sizeof(data_block), calc_crc32); } /* Compare crc result with a magic number. */ return (calc_crc32 == magic_number) ? 1 : 0; } /* Compare current hash with hash from file byte by byte. */ int CheckFilehash(void) { unsigned int k; int offset = sizeof(retain_info.retain_size); rewind(retain_buffer); fseek(retain_buffer, offset , SEEK_SET); uint32_t size; fread(&size, sizeof(size), 1, retain_buffer); if (size != retain_info.hash_size) return 0; for(k = 0; k < retain_info.hash_size; k++){ uint8_t file_digit; fread(&file_digit, sizeof(file_digit), 1, retain_buffer); if (file_digit != *(retain_info.hash+k)) return 0; } return 1; } void InitRetain(void) { unsigned int i; /* Get retain size in bytes */ retain_info.retain_size = GetRetainSize(); /* Hash stored in retain file as array of char in hex digits (that's why we divide strlen in two). */ retain_info.hash_size = PLC_ID ? strlen(PLC_ID)/2 : 0; //retain_info.hash_size = 0; retain_info.hash = malloc(retain_info.hash_size); /* Transform hash string into byte sequence. */ for (i = 0; i < retain_info.hash_size; i++) { int byte = 0; sscanf((PLC_ID + i*2), "%02X", &byte); retain_info.hash[i] = byte; } /* Calc header offset. */ retain_info.header_offset = sizeof(retain_info.retain_size) + \ sizeof(retain_info.hash_size) + \ retain_info.hash_size; /* Set header CRC initial state. */ retain_info.header_crc = 0; /* Calc crc for header. */ retain_info.header_crc = GenerateCRC32Sum( &retain_info.retain_size, sizeof(retain_info.retain_size), retain_info.header_crc); retain_info.header_crc = GenerateCRC32Sum( &retain_info.hash_size, sizeof(retain_info.hash_size), retain_info.header_crc); retain_info.header_crc = GenerateCRC32Sum( retain_info.hash, retain_info.hash_size, retain_info.header_crc); } void CleanupRetain(void) { /* Free hash memory. */ free(retain_info.hash); } int CheckRetainFile(const char * file) { retain_buffer = fopen(file, "rb"); if (retain_buffer) { /* Check CRC32 and hash. */ if (CheckFileCRC(retain_buffer)) if (CheckFilehash()) return 1; fclose(retain_buffer); retain_buffer = NULL; } return 0; } int CheckRetainBuffer(void) { retain_buffer = NULL; if (!retain_info.retain_size) return 1; /* Check latest retain file. */ if (CheckRetainFile(rb_file)) return 1; /* Check if we have backup. */ if (CheckRetainFile(rb_file_bckp)) return 1; /* We don't have any valid retain buffer - nothing to remind. */ return 0; } #ifndef FILE_RETAIN_SAVE_PERIOD_S #define FILE_RETAIN_SAVE_PERIOD_S 1.0 #endif static double CalcDiffSeconds(IEC_TIME* t1, IEC_TIME *t2) { IEC_TIME dt ={ t1->tv_sec - t2->tv_sec, t1->tv_nsec - t2->tv_nsec }; if ((dt.tv_nsec < -1000000000) || ((dt.tv_sec > 0) && (dt.tv_nsec < 0))){ dt.tv_sec--; dt.tv_nsec += 1000000000; } if ((dt.tv_nsec > +1000000000) || ((dt.tv_sec < 0) && (dt.tv_nsec > 0))){ dt.tv_sec++; dt.tv_nsec -= 1000000000; } return dt.tv_sec + 1e-9*dt.tv_nsec; } int RetainSaveNeeded(void) { int ret = 0; static IEC_TIME last_save; IEC_TIME now; double diff_s; /* no retain */ if (!retain_info.retain_size) return 0; /* periodic retain flush to avoid high I/O load */ PLC_GetTime(&now); diff_s = CalcDiffSeconds(&now, &last_save); if ((diff_s > FILE_RETAIN_SAVE_PERIOD_S) || ForceSaveRetainReq()) { ret = 1; last_save = now; } return ret; } void ValidateRetainBuffer(void) { if (!retain_buffer) return; /* Add retain data CRC to the end of buffer file. */ fseek(retain_buffer, 0, SEEK_END); fwrite(&retain_crc, sizeof(retain_crc), 1, retain_buffer); /* Sync file buffer and close file. */ #ifdef __WIN32 fflush(retain_buffer); #else fsync(fileno(retain_buffer)); #endif fclose(retain_buffer); retain_buffer = NULL; } void InValidateRetainBuffer(void) { if (!RetainSaveNeeded()) return; /* Rename old retain file into *.bak if it exists. */ rename(rb_file, rb_file_bckp); /* Set file CRC initial value. */ retain_crc = retain_info.header_crc; /* Create new retain file. */ retain_buffer = fopen(rb_file, "wb+"); if (!retain_buffer) { fprintf(stderr, "Failed to create retain file : %s\n", rb_file); return; } /* Write header to the new file. */ fwrite(&retain_info.retain_size, sizeof(retain_info.retain_size), 1, retain_buffer); fwrite(&retain_info.hash_size, sizeof(retain_info.hash_size), 1, retain_buffer); fwrite(retain_info.hash , sizeof(char), retain_info.hash_size, retain_buffer); } void Retain(unsigned int offset, unsigned int count, void *p) { if (!retain_buffer) return; /* Generate CRC 32 for each data block. */ retain_crc = GenerateCRC32Sum(p, count, retain_crc); /* Save current var in file. */ fseek(retain_buffer, retain_info.header_offset+offset, SEEK_SET); fwrite(p, count, 1, retain_buffer); } void Remind(unsigned int offset, unsigned int count, void *p) { /* Remind variable from file. */ fseek(retain_buffer, retain_info.header_offset+offset, SEEK_SET); fread((void *)p, count, 1, retain_buffer); } #endif // !HAVE_RETAIN /** * Tail of code common to all C targets **/ /** * LOGGING **/ #ifndef TARGET_LOGGING_DISABLE #ifndef LOG_BUFFER_SIZE #define LOG_BUFFER_SIZE (1<<14) /*16Ko*/ #endif #ifndef LOG_BUFFER_ATTRS #define LOG_BUFFER_ATTRS #endif #define LOG_BUFFER_MASK (LOG_BUFFER_SIZE-1) static char LogBuff[LOG_LEVELS][LOG_BUFFER_SIZE] LOG_BUFFER_ATTRS; static void inline copy_to_log(uint8_t level, uint32_t buffpos, void* buf, uint32_t size){ if(buffpos + size < LOG_BUFFER_SIZE){ memcpy(&LogBuff[level][buffpos], buf, size); }else{ uint32_t remaining = LOG_BUFFER_SIZE - buffpos; memcpy(&LogBuff[level][buffpos], buf, remaining); memcpy(LogBuff[level], (char*)buf + remaining, size - remaining); } } static void inline copy_from_log(uint8_t level, uint32_t buffpos, void* buf, uint32_t size){ if(buffpos + size < LOG_BUFFER_SIZE){ memcpy(buf, &LogBuff[level][buffpos], size); }else{ uint32_t remaining = LOG_BUFFER_SIZE - buffpos; memcpy(buf, &LogBuff[level][buffpos], remaining); memcpy((char*)buf + remaining, LogBuff[level], size - remaining); } } /* Log buffer structure |<-Tail1.msgsize->|<-sizeof(mTail)->|<--Tail2.msgsize-->|<-sizeof(mTail)->|... | Message1 Body | Tail1 | Message2 Body | Tail2 | */ typedef struct { uint32_t msgidx; uint32_t msgsize; unsigned long tick; IEC_TIME time; } mTail; /* Log cursor : 64b |63 ... 32|31 ... 0| | Message | Buffer | | counter | Index | */ static uint64_t LogCursor[LOG_LEVELS] LOG_BUFFER_ATTRS = {0x0,0x0,0x0,0x0}; void ResetLogCount(void) { uint8_t level; for(level=0;level> 32); new_cursor = ((uint64_t)(tail.msgidx + 1)<<32) | (uint64_t)((buffpos + size + sizeof(mTail)) & LOG_BUFFER_MASK); }while(AtomicCompareExchange64( (long long*)&LogCursor[level], (long long)old_cursor, (long long)new_cursor)!=(long long)old_cursor); copy_to_log(level, buffpos, buf, size); copy_to_log(level, (buffpos + size) & LOG_BUFFER_MASK, &tail, sizeof(mTail)); return 1; /* Success */ }else{ char mstr[] = "Logging error : message too big"; LogMessage(LOG_CRITICAL, mstr, sizeof(mstr)); } return 0; } uint32_t GetLogCount(uint8_t level){ return (uint64_t)LogCursor[level] >> 32; } /* Return message size and content */ uint32_t GetLogMessage(uint8_t level, uint32_t msgidx, char* buf, uint32_t max_size, uint32_t* tick, uint32_t* tv_sec, uint32_t* tv_nsec){ uint64_t cursor = LogCursor[level]; if(cursor){ /* seach cursor */ uint32_t stailpos = (uint32_t)cursor; uint32_t smsgidx; mTail tail; tail.msgidx = cursor >> 32; tail.msgsize = 0; /* Message search loop */ do { smsgidx = tail.msgidx; stailpos = (stailpos - sizeof(mTail) - tail.msgsize ) & LOG_BUFFER_MASK; copy_from_log(level, stailpos, &tail, sizeof(mTail)); }while((tail.msgidx == smsgidx - 1) && (tail.msgidx > msgidx)); if(tail.msgidx == msgidx){ uint32_t sbuffpos = (stailpos - tail.msgsize ) & LOG_BUFFER_MASK; uint32_t totalsize = tail.msgsize; *tick = tail.tick; *tv_sec = tail.time.tv_sec; *tv_nsec = tail.time.tv_nsec; copy_from_log(level, sbuffpos, buf, totalsize > max_size ? max_size : totalsize); return totalsize; } } return 0; } #endif #ifndef TARGET_EXT_SYNC_DISABLE #define CALIBRATED -2 #define NOT_CALIBRATED -1 static int calibration_count = NOT_CALIBRATED; static IEC_TIME cal_begin; static long long Tsync = 0; static long long FreqCorr = 0; static int Nticks = 0; static unsigned long last_tick = 0; /* * Called on each external periodic sync event * make PLC tick synchronous with external sync * ratio defines when PLC tick occurs between two external sync * @param sync_align_ratio * 0->100 : align ratio * < 0 : no align, calibrate period **/ void align_tick(int sync_align_ratio) { /* printf("align_tick(%d)\n", calibrate); */ if(sync_align_ratio < 0){ /* Calibration */ if(calibration_count == CALIBRATED) /* Re-calibration*/ calibration_count = NOT_CALIBRATED; if(calibration_count == NOT_CALIBRATED) /* Calibration start, get time*/ PLC_GetTime(&cal_begin); calibration_count++; }else{ /* do alignment (if possible) */ if(calibration_count >= 0){ /* End of calibration */ /* Get final time */ IEC_TIME cal_end; PLC_GetTime(&cal_end); /*adjust calibration_count*/ calibration_count++; /* compute mean of Tsync, over calibration period */ Tsync = ((long long)(cal_end.tv_sec - cal_begin.tv_sec) * (long long)1000000000 + (cal_end.tv_nsec - cal_begin.tv_nsec)) / calibration_count; if( (Nticks = (Tsync / common_ticktime__)) > 0){ FreqCorr = (Tsync % common_ticktime__); /* to be divided by Nticks */ }else{ FreqCorr = Tsync - (common_ticktime__ % Tsync); } /* printf("Tsync = %ld\n", Tsync); printf("calibration_count = %d\n", calibration_count); printf("Nticks = %d\n", Nticks); */ calibration_count = CALIBRATED; } if(calibration_count == CALIBRATED){ /* Get Elapsed time since last PLC tick (__CURRENT_TIME) */ IEC_TIME now; long long elapsed; long long Tcorr; long long PhaseCorr; long long PeriodicTcorr; PLC_GetTime(&now); elapsed = (now.tv_sec - __CURRENT_TIME.tv_sec) * 1000000000 + now.tv_nsec - __CURRENT_TIME.tv_nsec; if(Nticks > 0){ PhaseCorr = elapsed - (common_ticktime__ + FreqCorr/Nticks)*sync_align_ratio/100; /* to be divided by Nticks */ Tcorr = common_ticktime__ + (PhaseCorr + FreqCorr) / Nticks; if(Nticks < 2){ /* When Sync source period is near Tick time */ /* PhaseCorr may not be applied to Periodic time given to timer */ PeriodicTcorr = common_ticktime__ + FreqCorr / Nticks; }else{ PeriodicTcorr = Tcorr; } }else if(__tick > last_tick){ last_tick = __tick; PhaseCorr = elapsed - (Tsync*sync_align_ratio/100); PeriodicTcorr = Tcorr = common_ticktime__ + PhaseCorr + FreqCorr; }else{ /*PLC did not run meanwhile. Nothing to do*/ return; } /* DO ALIGNEMENT */ PLC_SetTimer(Tcorr - elapsed, PeriodicTcorr); } } } #endif