Progmmmation synchrone

Adrien Guatto

2020—2024
Ces notes de cours proposent une introduction a la programmation des
systémes réactifs par le biais des langages de programmation dits syn-
chrone. Elles correspondent a un enseignement délivré durant les années

universitaires 2020-2024 a I'Université de Paris, en Master 2 Informatique
ainsi qu’a I’Ecole d'Ingénieur Denis Diderot.

Table des matiéres

Introduction 2
Programmes et systemes réactifs 2
Langages synchrones 4
Le reste du cours 5
La programmation synchrone a flots de données 6
Premiers programmes 8
Programmation flots de données et causalité 10
Horloges 18
Automates 24
Tableaux et itérateurs 32
Applications 39
Programmation audio en temps-réel 39
Controle d'un pendule inversé 39
Compilation des langages synchrones a flots de données
Introduction 42
De MiniLS a Obc 43
De Heptagon a MiniLS 50

Types, initialisation, causalité, horloges 56

42

Version du 10 novembre 2025. Je
suis preneur de toute coquille, er-
reur ou remarque par courriel a
I'adresse adrien@guatto.org.

Ne pas redistribuer.

mailto:adrien@guatto.org

Introduction

L'apprentissage de la programmation se structure traditionnellement
le long de deux axes :

1. la pratique de la programmation dans des langages variés, par
exemple Java, C ou OCaml;

2. I’étude de concepts et techniques algorithmiques indépendants du
langage de programmation, par exemple 1’algorithmique des tris, ou
encore celle des graphes.

Le but du présent cours est de prolonger ces deux axes dans une direc-
tion qui devrait étre nouvelle pour vous : celle des programmes réactifs,
par opposition aux programmes transformationnels ™.

Programmes et systemes réactifs

Un programme transformationnel lit une entrée, la traite, puis pro-
duit un résultat complet en temps fini. L'utilitaire sort d’"UNIX, qui trie
une liste de lignes par ordre alphabétique, constitue un exemple tres
simple de programme transformationnel. Un exemple plus sophistiqué
est fourni par n'importe quel compilateur capable de traduire un fichier
source en un fichier en langage cible? réutilisable3. La plupart des
programmes que vous avez écrits jusqu’ici sont transformationnels.

Par opposition, un programme réactif est en interaction continuelle
avec un environnement extérieur qu’il va chercher a controler, sur-
veiller ou réguler. Cet environnement extérieur est généralement un
environnement physique, que notre programme observe par le biais de
capteurs et influence par le biais d’actuateurs — voir figure 1. Pensez
au pilote automatique d'un avion (fly-by-wire en anglais), au firmware
du modem 4G de votre téléphone, ou plus modestement au controleur
de votre four a micro-ondes.

Question 1. Pouvez-vous citer d’autres exemples de programmes transfor-
mationnels ? De programmes réactifs ? De programmes qui ne semblent pas
appartenir nettement a un des deux cotés de cette classification ?

Un programme réactif ne peut généralement pas étre considéré en
isolation de son environnement extérieur. Par exemple, le pilote au-
tomatique d’un avion fait des hypotheses sur I'environnement aérien
(altitude, force du vent, etc.) ainsi que sur 'avion lui méme (poids, por-
tance, etc.). Pour cette raison, on parlera généralement de systeéme réactif
pour englober sous un méme terme le logiciel et son environnement,
en insistant sur leur interdépendance 4.

En plus de cette définition générale, beaucoup de systémes réactifs
partagent un petit nombre de caractéristiques essentielles, que nous
allons maintenant aborder.

PROGRAMMATION SYNCHRONE 2

1. La distinction entre ces deux classes de
programmes est traditionnellement attri-
buée a Zohar Manna et Amir Pnueli [11].

2. Par exemple, le langage machine com-
pris par votre processeur pour gcc, ou le
code-octet de la machine virtuelle Java
pour javac.

3. Le cas des compilateurs a la volée (just-
in-time), qu’on trouve notamment dans
les navigateurs web, est plus complexe et
ne rentre pas facilement dans la dichoto-
mie transformationnel vs. réactif.

— Env. physique

Actuateurs
smajde))

Programme réactif

FIGURE 1: systéme réactif générique.

4. On verra ultérieurement que cette inter-
dépendance se traduit de fagon concrete
par la pratique qui consiste a développer
simultanément le programme réactif et
un modele logiciel de son environnement
physique, afin de simuler leur interaction.

Criticite.

siques ol l'erreur peut avoir des conséquences catastrophiques sur la

Certains programmes réactifs controlent des dispositifs phy-

vie humaine, ou bien un cofit financier démesuré. Citons deux erreurs
restées tristement célébres.

— Le 4 juin 1996, le premier vol d’Ariane 5 aboutit a la destruction du
lanceur 37 secondes apreés son décollage (figure 2). Une partie du
logiciel avait été reprise d”Ariane 4 sans étre mise a jour pour tenir
compte de I'évolution des caractéristiques physiques du lanceur> .

— Entre 1985 et 198y, les machines de radiothérapie Therac-25 (fi-
gure 3) ont causé six irradiations massives, dont trois mortelles. Le
tout a été causé par la combinaison d’une pratique défaillante du gé-
nie logiciel (manque de test), de I’absence de protections physiques
(jugées redondantes), et de la présence de bogues de programmation
concurrente de type “condition de course” (race condition).

Ces systémes réactifs, ot 1'erreur est inadmissible, sont dits critigues.
Leur conception et réalisation doit assurer un haut niveau de stireté, et
exige donc 'emploi d’une méthodologie adaptée.

Question 2. Pouvez-vous citer un exemple de systeme critique dans le secteur
des transport ? Dans le secteur bio-médical ? Dans le secteur militaire ?
Contraintes temporelles. Les programmes réactifs sont souvent soumis
a des contraintes dites de temps-réel — c’est presque toujours le cas s’ils
appartiennent a un systéme critique. Un programme temps-réel doit
absolument réagir en un temps borné maximal a certains changements
de 'environnement. Manquer cette échéance peut entrainer un échec
catastrophique de tout le systeme. Par exemple, le systeme TCAS II,
employé dans l’aviation civile, est chargé d’avertir un pilote en cas de
présence d’un appareil intrus dans une de ses trois zones d’intérét (cf. fi-
gure 4). Le pilote doit étre averti trées rapidement pour lui laisser le
temps de réagir avant qu’une collision ait pu se produire.

Un des facteurs principaux qui impose des contraintes temps-réel aux
programmes réactifs est leur interaction avec I'environnement physique.
L'évolution de celui-ci est régie par des lois mathématiques qui évoluent
en temps continu. A I'inverse, 'exécution du programme réactif prend la
forme d’une séquence de transitions discrétes, autrement dit, en termps
discret. Des lors, il faut s’interroger sur la capacité du programme
réactif a se faire une idée juste du systéme physique. Il s’agit d'un
probléme d’échantillonage : le programme réactif doit observer le systeme
physique a la bonne fréquence, ni trop lente, ni trop rapide. Autrement
dit, la fréquence de réaction du programme fait partie intégrante de
l'algorithme employé®.

PROGRAMMATION SYNCHRONE 3

FIGURE 2: vol 501 d’Ariane 5.

5. On peut approfondir sur les causes logi-
cielles de cet échec et leurs conséquences
matérielles en lisant le rapport de la com-
mission d’enquéte. Une copie est dispo-
nible en ligne.

F1GURE 3: machine Therac-25.

Warning lrn

A 15-35 sec.

_ Caution area
. TA 2048 sec.
|

FIGURE 4: Zones d’intérét du systeme
d’évitement de collision TCAS II.

6. La littérature sur les systéemes temps-
réel distingue souvent la correction fonc-
tionnelle des contraintes temps-réel, et pro-
pose de les considérer indépendamment.
La présente discussion montre que cette
distinction n’est pas toujours pertinente.

http://deschamp.free.fr/exinria/divers/ariane_501.html
https://mediawiki.ivao.aero/index.php?title=Traffic_collision_avoidance_system_-_TCAS

Mathématiques dédiées. Le paragraphe précédent illustre I'importance
des mathématiques appliquées dans la conception d'un programme
réactif en interaction avec un environnement. En général, cet environ-
nement évolue au cours du temps selon ses propre lois — on parle
alors de systeme dynamique. La sous-discipline des mathématique appli-
quées qui se consacre au controle des systemes dynamiques s’appelle
I'automatique (control theory en anglais). Ce contrdle peut passer par
des dispositifs numériques, mais aussi purement électriques ou méca-
niques’. Les théoremes d’automatique fournissent par exemple des
garanties sur la correction de I'échantillonage, comme nous en avons
discuté ci-dessus, mais aussi des outils d’analyse du comportement des
systémes dynamiques.

Le présent cours n’est pas un cours de mathématiques, aussi nous
ne traiterons pas d’automatique a proprement parler. Toutefois, nous
ferons référence a certains de ses résultats a plusieurs reprises, et nous
montrerons comment certains concepts issus de 'automatique sont
utiles pour la programmation de systémes réactifs, sans détailler leurs

sous-bassements théoriques®.

Contraintes de ressources. Enfin, les programmes réactifs se retrouvent
en général exécutés par du matériel informatique dont c’est la seule
fonction. On parle typiquement de systéme embarqué. De tels systémes
sont généralement soumis a des impératifs de cotits forts, surtout
lorsqu’ils doivent étre produits & de nombreux exemplaires dans une
perspective commerciale (pensons, par exemple, aux microcontréleurs
qu’on trouve dans les fours a micro-ondes actuels). Ces impératifs
de cotit exigent généralement des programmes réactifs qu’ils soient
économes en temps, en espace, en énergie.

La programmation des systemes embarqués, envisagée sous l'angle
de I'optimisation de 1'usage des ressources, est un sujet riche, connecté
a de nombreux sous-domaines de l'informatique dont la compilation,
les systemes d’exploitation ou 1’architecture des processeurs. Dans
ce cours, nous nous focaliserons néanmoins sur les aspects de haut
niveau (expressivité, stireté) de la programmation réactive dans la
mesure ol ses aspects de bas niveau sont traités dans d’autres cours.

Langages synchrones

On a vu que les programmes réactifs peuvent étre critiques, doivent
généralement obéir a des contraintes temporelles et de ressources, et
reposent sur des théories mathématiques dédiées, notamment l’auto-
matique. Il est donc légitime pour un langage de programmation dédié
aux systemes réactifs de chercher a faciliter I'écriture de programmes
mettant en jeu des procédés de contrdle issus de I'automatique, tout en

PROGRAMMATION SYNCHRONE 4

7. Un exemple célebre de dispositif de
controle mécanique est le régulateur a
boules de James Watt.

Il permet de maintenir une machine a
vapeur a une vitesse quasiment constante
en contrdlant l'arrivée de vapeur. Celle-ci
diminue si la machine est trop rapide, et
augmente si elle est trop lente.

8. Si vous souhaitez découvrir ceux-ci, le
livre d’Astrém et Murray [12] offre une
introduction a ’automatique illustrée de
nombreux exemples. La deuxieme édi-
tion est disponible en ligne.

http://www.cds.caltech.edu/~murray/amwiki/index.php/Second_Edition

assurant un niveau de siireté élevé, et en étant économe en ressources.

PROGRAMMATION SYNCHRONE 5§

Dtie 0 You thde oot oot Bomt Sk I o dow 150 isix]

DEEo e

58 TR e e

S|

¥#530 (2800888 s VE - -WC@ 90

800 06000008 ODDE> 080868 000B00800CCT®
B

SN o

T2z
236303
T Erame [
e mm:l [— T
e 1= I T
% Pt

0T

o

\csoges (g Bl S

Les langages de programmation synchrones suivent une telle voie.
Issus de la recherche en informatique francaise, allemande et américaine
depuis les années 1980, ils reposent sur une notion de temps discret
global qui facilite la mise au point des programmes réactifs. Leur usage
est désormais routinier, notamment dans l'industrie du transport. A
titre d’exemple, le langage synchrone SCADE 6 a servi a la réalisation
des commandes de vol du modele A380 d’Airbus.

Si plusieurs familles de langages synchrones existent, nous nous foca-
liserons sur celle des langages synchrones a flots de données (data-flow en
anglais) 9. Ceux-ci sont en effet largement les plus utilisés dans l'indus-
trie, tout en restant en développement actif dans le monde universitaire.
IIs facilitent la programmation réactive en offrant des concepts proches
a la fois de l'automatique et de la programmation fonctionnelle. Ils
sont issus de travaux pionniers de chercheurs grenoblois, qui ont voulu
comprendre et généraliser la méthodologie empirique suivie par les
ingénieurs pour concevoir les premiers dispositifs de controle numé-
riques '°. En une quarantaine d’années, ces langages ont contribué a
I’évolution graduelle d'une méthodologie basée sur des schémas in-
formels, suggestifs mais sans contenu calculatoire, vers de véritables
langages de programmation rigoureux, dotés d’une sémantique solide
et de compilateurs sophistiqués (figure 5).

Le reste du cours

Le but de ce cours est donc d’offrir une introduction aux systémes
réactifs ainsi qu’aux langages synchrones. Il sera structuré selon les
deux axes décrits au début de ce texte, programmation et algorithmique,
auxquels on adjoindra un troisiéme sujet, 'implémentation des langages
synchrones, qui occupera la fin du semestre.

L0] 2

FIGURE 5: les langages synchrones a flots
de données, du protolangage Spécifica-
tion Assistée par Ordinateur (SAO) d’Air-
bus (a gauche), au langage industriel
contemporain SCADE 6, développé par
la compagnie Ansys (a droite).

9. On pourra trouver un panorama his-
torique des autres familles de langages
synchrones dans l'article de Benveniste
et al. [1].

10. On peut lire I'article [3] original de ces
chercheurs au sujet du langage Lustre,
I'ancétre commun de tous les langages
synchrones a flots de données.

Tout d’abord, on pratiquera la programmation dans un langage
synchrone a flots, le langage Heptagon. Heptagon est un langage
tres proche de SCADE 6, mais développé par des universitaires. Il
dispose de fonctionnalités modernes : compilation séparée, automates
imbriqués, gestion des tableaux. Sa proximité vis-a-vis de SCADE vous
assure que vos compétences seront transférables facilement. De plus, il
s’agit d’un logiciel libre d’une installation simple.

Dans un second temps, nous discuterons des bases d’automatique
appliquée qui servent de soubassements algorithmiques a la plupart des
programmes réactifs. Nous n’entrerons quasiment pas dans les détails
mathématiques, adoptant a la place une démarche expérimentale basée
sur la programmation de petits controleurs en Heptagon.

Enfin, nous terminerons le semestre avec une introduction a 1'im-
plémentation des langages synchrones. Il s’agit d’étudier les analyses
statiques et techniques de génération de code employées par les compi-
lateurs, les secondes reposant sur les premieres. Pour bien comprendre
leur fonctionnement, une connaissance minimale de la sémantique for-
melle des langages synchrones est indispensable, et celle-ci sera donc
présentée.

La programmation synchrone a flots de données

On a vu qu'un programme réactif est en interaction continue avec
un environnement physique via capteurs et actuateurs, comme illustré
de facon schématique par la figure 1. Les langages synchrones partent
du principe que I'exécution d’un tel programme se produit de fagon cy-
clique, c’est a dire comme une suite d’interactions entre le programme
et son environnement. Un programme réactif n’agit en général pas
uniquement en fonction de la valeur courante des capteurs, mais égale-
ment de celles recueillies durant les interactions précédentes : il doit
donc, pour ce faire, avoir acces a une mémoire dont le contenu persiste
d’une interaction sur l’autre. De facon générale, chaque interaction se
divise en trois phases distinctes, lecture-calcul-écriture :

L. lecture des capteurs et de I'état courant de la mémoire;
C. phase de calcul des consignes des actuateurs et du nouvel état;
E. positionnement des actuateurs et mise a jour de la mémoire.

Les langages synchrones ne se préoccupent pas des détails bas-niveau
d’acces aux capteurs et actuateurs. Il est donc utile de s’abstraire de la
nature physique de l'environnement — sans toutefois oublier qu’elle
induit les contraintes temporelles discutées précédemment. Une fois
adopté ce point de vue simplifié, la structure d’un systéme réactif
cyclique peut étre représentée comme a la figure 6, ot capteurs et
actuateurs ont été remplacés par des entrées et sorties génériques.

PROGRAMMATION SYNCHRONE 6

Vous pouvez déja avoir un apercu du lan-
gage en consultant son site.

http://heptagon.gforge.inria.fr

— Environnement ——

Programme

Je39 [PANON Sorties
Ftat courant S°9HUd

—> Mémoire

FIGURE 6: systéeme réactif cyclique.

LCE | LCE LCE LCE >

FIGURE 7: temps logique, temps physique.

http://heptagon.gforge.inria.fr

Le choix de structurer 'exécution comme une suite infinie d’inter-
actions introduit naturellement une notion de temps logique. Ce temps
logique est constituée d"une succession d’instants logiques, chacun d’eux
correspondant a une interaction entre programme et environnement. Le
caractere logique de cette temporalité réside dans I’omission volontaire
du temps d’exécution. En d’autres termes, un instant logique n’a pas
d’épaisseur : du point de vue synchrone, I'interaction avec I’environ-
nement est instantanée. On appelle ce principe I'hypothése synchrone.
La figure 7 illustre la relation entre temps logique et temps physique :
le cycle Lecture-Calcul-Ecriture (LCE) réalisé a chaque interaction peut
prendre un temps d’exécution variable. De plus, rien ne garantit que
les interactions soient exécutées a intervalle régulier.

On peut trouver 'hypothese synchrone surprenante dans la mesure
oli, comme on 1’a vu, de nombreux systémes réactifs sont soumis a
des contraintes temporelles strictes. On verra que ce choix simplifie en
réalité leur mise au point en repoussant la prise en compte du temps
physique aussi longtemps que possible durant le développement.

Les langages synchrones font donc le choix d'une exécution cy-
clique et d'une structuration du temps comme succession d’instants
logiques. A un certain niveau d’abstraction, un programme synchrone
peut donc étre vu comme une machine a état, dont chaque transition
correspondrait & un instant logique. Comme on cherche un formalisme
mathématiquement simple pour décrire ces programmes, il est natu-
rel de se tourner vers la théorie des automates et, plus précisément,
des transducteurs, c’est a dires des automates finis qui, en plus de rece-
voir un mot en entrée, produit également un mot en sortie. Toutefois,
les automates restent des objets complexes : par exemple, raisonner
sur I'équivalence entre automates passe naturellement par la bisimula-
tion (cf. figure 8), une notion profonde mais relativement technique. Une
autre difficulté est celle de la modularité : si on peut définir diverses
manieres d’assembler plusieurs automates en un automate plus gros
— par exemple par la composition séquentielle de transducteurs — le
résultat sera un automate a plat, sans structure. En bref, si le formalisme
des automates est indispensable & la vérification de systemes réactifs
cycliques, il ne semble pas fournir un langage adapté au génie logiciel,
du moins sil n’est pas complété par d’autres principes de structuration.

On peut contraster la notion d’automate a une autre notion mathé-
matique qui, bien qu’élémentaire, s’est révélée trés compatible avec le
génie logiciel : celle de fonction. Une fonction est un objet plus simple
qu'un automate au sens o1 I'égalité entre fonctions est triviale — par
définition, deux fonctions sont égales lorsqu’elles envoient les mémes
entrées vers les mémes sorties. De plus, les langages dits “fonctionnels”
tels que Haskell ou OCaml ont montré comment batir un langage de
programmation au dessus de la notion de fonction. Il est donc naturel

PROGRAMMATION SYNCHRONE 7

Les deux automates ci-dessous sont-ils
équivalents, c’est a dire, reconnaissent-ils
le méme langage ? (Cet exemple simple
est issu d'un article de Bonchi et Pous [2].)

O 02 ClORON0

On peut étudier cette question a 'aide
de la notion de bisimulation. Ecrivons S
pour l’ensemble des états de nos
automates. Une bisimulation est une
relation R C S x S telle que, pour toute
paire d’états (s1,s2) € R, on ait :
1. sp est final ssi s; est final,
2. 81 51 & sj alors il existe s, tel
que s> = sh et (s}, s5) €R,
3. si 55 5 s alors il existe s tel
que s; = s} et (s],s5) € R.
On peut montrer que deux états sq, s
d’automates finis déterministes recon-
naissent le méme langage ssi il existe
une bisimulation R telle que (s1,s2) € R.
Dans le cas qui nous occupe, existe-t-il
une bisimulation R telle que (x,u) € R?
Oui! Essayez de définir R = {(x,u),...}
en énumérant les couples manquants.
F1GURE 8: bisimulations entre automates.

de chercher a concilier le monde des automates et celui des fonctions.
Pour ce faire, on peut débuter par une observation simple. Si ¥
est I'alphabet du mot d’entrée et X, ’alphabet du mot de sortie, un
transducteur déterministe '* A implémente une fonction f4 : £} — X5
telle que f4(w) = w' lorsque A produit le mot w’ en lisant le mot w.
Cette fonction a toujours plusieurs propriétés remarquables, notamment
son caractere synchrone : elle associe toujours un mot de longueur n a
un mot de longeur n. L'idée clef des langages synchrones dits 4 flots de
données est de partir de la fonction synchrone pour aller vers 'automate,
plutdt que l'inverse. Autrement dit, un programme va consister en
une fonction synchrone, et c’est le compilateur qui va reconstruire le
transducteur sous-jacent, celui-ci étant vu comme une implémentation
concrete de la fonction (cf figure 9). De plus, comme on s’intéresse
aux systémes réactifs, qui s’exécutent sans discontinuer, la fonction
synchrone va consommer et produire non pas des mots finis dans ¥}
et X7, mais des suites infinies de lettres, aussi appelées flots, et dont
les ensembles sont dénotés X et . On espere ainsi bénéficier du
meilleur des deux mondes : la proximité des automates avec le modele
d’exécution sous-jacent, et 'expressivité des langages fonctionnels 2.

Premiers programmes

Nous allons maintenant explorer les langages synchrones a flots de
données de fagon concrete. Notre véhicule pour ce faire sera le langage
Heptagon, qui est trés proche du langage industriel SCADE 6 mais
dont le compilateur est un logiciel libre.

Neeuds.
chrones sur les flots de données. On appelle ces fonctions des nauds.

Un programme Heptagon est un ensemble de fonctions syn-

Chaque nceud dispose d'une interface, liste finie de sorties et d’entrées
déclarées avec leurs types, ainsi que d’un corps, qui est une liste d’équa-
tions définissant la valeur des sorties en fonction de celles des entrées.
On peut par exemple définir un noeud correspondant a la fonction
identité sur les entiers comme ci-dessous.

node identite(x : int) returns (y : int)
let

y = X;
tel

Il est important de remarquer que le type int, en Heptagon, ne désigne
pas un unique entier, mais un flot d’entiers. Il en va de méme pour les
types float, bool, etc. Le noeud ci-dessous représente donc la fonction
mathématique id : Z§, — Z%,, ou Z3 désigne I'ensemble des entiers
relatifs représentable en complément a deux sur 32 bits 3.

PROGRAMMATION SYNCHRONE 8§

p3 Xy
Transducteur
— —
S S
compilation
Iy Iy
4<—— Fonction synchrone ¥——

FIGURE 9: compilation des langages syn-
chrones a flots de données.

11. Cette fonction peut étre partielle si le
transducteur est incomplet. Plus générale-
ment, un transducteur non-déterministe
donne lieu a une relation Ry C X] x
23. Les relations implémentables par
des transducteurs sont dites ration-
nelles (ou régulieres), par analogie avec les
langages et expressions rationnelles (ou
réguliéres).

12. L'idée qui consiste a décrire des sys-
témes réactifs avec état (comme les auto-
mates) par des fonctions de flots est issue
du travail pionnier de Kahn [9].

On peut représenter le comportement
d’un neeud sur une entrée choisie a 'aide
d'un chronogramme, c’est a dire d’un ta-
bleau dont chaque colonne correspond a
un instant logique distinct.

2 o 1 -3 2 2
y|-=2 o 1 -3 2 2

Ce chronogramme illustre le caractere
synchrone de la fonction identité, vue
comme agissant sur des flots : les 1 pre-
miéres valeurs de y dépendent unique-
ment des n premieres valeurs de x. On
verra que ce sera aussi le cas de fonctions
bien plus complexes.

13. En réalité, Heptagon ne fixe pas la
taille des entiers utilisés, mais aligne son
type int au type int du langage C. Sa
taille dépend donc de votre machine, et
plus précisément du compilateur C uti-
lisé pour compiler le code généré par
Heptagon (cf. plus bas).

On peut compiler un programme Heptagon en demandant au com-
pilateur heptc de produire une sortie en langage C. Les fichiers sources
ainsi générés contiennent une implémentation du transducteur sous
une forme ressemblant '+ au code ci-dessous.

/* Définition de 1'état du transducteur. =/
struct identite_state { };
/* Défininition de la fonction d'initialisation de l'état. */
void identite_reset(struct identite_state *state) { }
/* Défininition de la fonction de transition. x/
void identite_step(struct identite_state xstate,
int x, int xy) { *y = x; }

On verra lors des cours et séances de travaux pratiques suivants une
facon commode d’exécuter la fonction de transition.

Un noeud Heptagon peut également disposer de variables locales, qui
ne sont ni des entrées ni des sorties. Elles doivent étre déclarées avec le
mot clef var et définies dans le corps du nceud.

node identite_bis(x : int) returns (y : int)
var z : int;

let
zZ = X;
y = 2;
tel

Un point trés important, commun a tous les langages synchrones a flots
de données, est que 'ordre des définitions n’importe pas. Ainsi, on
peut réécrire notre fonction identité de fagon strictement équivalente
mais en définissant y avant z.

node identite_ter(x : int) returns (y : int)
var z : int;

let
y =2z;
zZ = X;
tel

Cet exemple montre que le point-virgule qui sépare les équations n’est
pas la construction de séquencement qu’on trouve en C, Java ou OCaml.
Au contraire, il s’agit simplement de marquer la fin d’une équation
dans le bloc de définitions mutuellement récursives compris entre let
et tel.

La possibilité d’écrire des équations mutuellement récursives est
nécessaire pour pouvoir écrire des fonctions de flots générales, comme
on le verra ultérieurement. Elle ouvre néanmoins la porte a la possibilité
d’erreurs. Considérons le code ci-dessous, en apparence une simple
modification du précédent.

PROGRAMMATION SYNCHRONE 9

14. En pratique, le compilateur applique
certaines transformations qui rendent le
code moins lisible mais plus efficace et
plus court.

node identite_bad(x : int) returns (y : int)
var z int;
let
y = z;
Z =Y,
tel

Ce programme est trés suspect : on a défini y en fonction de z, et vice-
versa! Si l’on essaie de le compiler avec heptc, on obtient un message
d’erreur.

$ heptc -target c ex-04-bad.ept
Causality error: the following constraint is not causal.
"z<y ||l Yy <z

On appelle les erreurs causées par ce genre de définitions circulaires,
ou cercles vicieux, des erreurs de causalité 5. L'étude de la notion de
causalité est au coeur des langages synchrones, et il faut en comprendre
le fonctionnement général pour programmer productivement dans un
langage comme Heptagon. On y reviendra en détail lors des cours
suivants, y compris une explication de ce message d’erreur.

Programmation flots de données et causalité

Opérations combinatoires. On a vu que tout programme Heptagon

manipule des flots de données, c’est a dire des suites infinies de valeurs.

Tout comme les types int ou bool désignent respectivement les flots
d’entiers et de booléens, en Heptagon les littéraux désignent des flots
constants.

node f() returns (x, y int; z bool)

let
X =13

42;

false;

tel

Ainsi, dans le noeud ci-dessus, les littéraux 0, 42 ou false désignent
des flots constants. Les trois sorties x,y et z sont donc décrites par le
chronogramme ci-dessous.

1 1 1 1 1 1 1 1 1
Y| 42 42 42 42 42 42 42 42 42
z | false false false false false false false false false

Pour formuler précisément les constructions d"un exemple, il est utile
d’employer une notation formelle pour désigner le flot associé a une
expression Heptagon. Autrement dit, on va distinguer la sémantique

PROGRAMMATION SYNCHRONE 10

15. On trouve parfois employé le terme
plus sobre de productivité.

Un nceud Heptagon peut avoir plu-
sieurs entrées et plusieurs sorties. On
peut grouper les déclarations succes-
sives des varibales de méme type en sé-
parant les noms de variables par des
virgules, et les groupes de variables
de méme type par des points-virgules.
Ainsi, x, y : int; z : int est équi-
valenta x : int; y : int; z : int.

d’une expression de sa syntaxe. Si e est une expression Heptagon, on
écrira [e] pour 1'objet sémantique associé. Il s’agira généralement d'un
flot ou d'un n-uplet de flots. La sémantique ([/]»)nen d’un littéral I est
un flot dont le néme élément est défini par 1’équation

[=1

Un nceud Heptagon est une fonction de flots, et peut donc étre
appliqué a des arguments pour produire des résultats. Ainsi, on peut
appeler le noeud précédent depuis un autre nceud situé plus bas dans
le méme fichier °.

node g() returns (o : int)
var x, y int; z bool;
let
(X, y, z) = T();
0=X+Y;
tel

Le nceud g, en plus de sa sortie o, déclare trois variables locales x,y, z
qui servent a stocker les résultats de f. La variable z n’est pas utilisée.
La sortie de g est définie comme la somme des deux premieéres sor-
ties de f. En Heptagon, la somme agit point a point sur les flots, tout
comme les autres opérateurs binaires — soustraction, multiplication,
division, opérateurs logiques et de comparaison, etc. On peut forma-
liser ce comportement par les équations sémantiques ci-dessous. La
derniére d’entre-elles, écrite pour une opération binaire op quelconque,
généralise les autres.

ler +e2]n = [e1]n + [e2]n

[er = e2]n = [erln — ezl

[op(e1, e2)]n = op([ea]n, [e2]n)

En appliquant ces définitions au nceud g, on obtient

[o]n =[x + ylx
= [x[n + Iyln
=1-+42
=43.

La sortie de g est donc le flot constant 43.
Tout comme les opérateurs arithmétiques et logiques, la construc-
tion if/then/else d'Heptagon fonctionne de fagon point a point.

[ea]ln si [e1]ln = true

if e; then e; else e =
[if e 2 3l les]n si [e1]ln = false

PROGRAMMATION SYNCHRONE 11

16. En Heptagon, chaque fichier donne
lieu a un module distinct. On peut faire
référence a un nceud situé dans un
autre module en le préfixant par le nom
du module en question. Par exemple,
si le nceud f a été défini dans le fi-
chier a.ept, on peut y faire référence
depuis un fichier b.ept en écrivant A. f.
Le fichier a.ept doit avoir été compilé
avant b.ept de sorte a produire un fichier
d’interface a.epci. Si a.epci est présent
dans un répertoire DIR autre que b.ept,
on peut indiquer ce chemin via heptc -I
DIR.

Question 3. Supposons qu’on fournisse comme entrée k au neeud défini
ci-dessous le flot constant 12. Que vaut la sortie o ?

node h(k : int) returns (o : int)
var x, y : int; z : bool;
let

(X, y, z) = T();

o=k + if z then 2 * x else y;
tel

Opérateurs séquentiels. Jusqu’ici, nous n’avons écrits que des nceuds
manipulant des flots constants, et des opérateurs dont la valeur du
flot de sortie a I'instant courant ne dépend que des valeurs des flots
d’entrée a l'instant courant. De tels opérateurs sont dits combinatoires.
Ce n’est pas trés excitant : on a essentiellement écrit des expressions
arithmétiques et booléennes ot1 le temps ne joue aucun role. La pre-
mieére construction avec une comportement temporel non-trivial que
nous allons étudier sera 'opérateur binaire fby. Un tel opérateur est
dit séquentiel. Sa sémantique est donnée par les équations suivantes.

[[€1H0 sin=0
[[ezﬂn,1 sin >0

[e1 by ex],, = {

Informellement, x fby y calcule le flot obtenu en insérant le premier
élément du flot x devant tous les éléments du flot y. En Heptagon, cet
opérateur associe a droite : I'expression x fby y fby z est un raccourci
pour x fby (y fby z).

Question 4. Expliquer pourquoi choisir de rendre I'opérateur fby associatif a
gauche serait bien moins utile.

On peut illustrer le fonctionnement de fby avec, par exemple, le
neeud i ci-dessous, variante du précédent ot on choisit entre x et 2 * y
selon la valeur courante du flot true fby z, variable au cours du temps.

node i(k : int) returns (o : int)
var x, y : int; z : bool;
let
(x, y, z) = f();
o =k + if true fby z then 2 * x else y;
tel

On peut comprendre son comportement via un chronogramme qui
représente les flots de sortie et locaux de i pour une entrée k arbitraire.

PROGRAMMATION SYNCHRONE 12

Pour demander au compila-
teur Heptagon de vérifier qu'un
neceud est combinatoire, on peut
le définir a I’aide du mot-clef fun
plutdt que node.

k -12 27 48 21 -20

X 1 1 1 1 1 1 1

y 42 42 42 42 42 42 42

z false false false false false false false

true fby z | true false false false false false false
6 30 69 90 63 22 47

On peut ainsi vérifier que [o]o = [k]o + 2 et [0],+1 = [k]n+1 + 42.

L'opérateur fby trouve toute son utilité en conjonction avec 1'utili-
sation de définitions récursives. Pour vous en convaincre, essayez de
résoudre la question suivante.

Question 5. Définir un nceud half avec une seule sortie booléenne qui
calcule le flot booléen périodique o alternant entre true et false, c’est a dire tel
que [o]ox = true et [o]oxy1 = false. Les premiéres valeurs du flot o doivent
donc étre true, false, true, false . . .

Pour résoudre cette question, on peut observer que la premiére
valeur de o doit étre le booléen true, suivi de la négation du flot o lui
méme! Ce qui nous mene a la définition suivante.

node half() returns (o : bool)
let

0o = true fby not o;
tel

Pour nous convaincre du fonctionnement, on peut effectuer un bref
calcul : on a [o]p = true et [0],+1 = [o],, oit b désigne la négation
d’un booléen b. On peut aussi représenter les flots o et not o sur un
chronogramme, et observer que le flot not o est égal au suffixe de o
qui commence au deuxiéme instant.

o=true fby not o | true false true false true false

not o false true false true false true

On a vu a la fin de la séance précédente que les définitions récursives
peuvent introduire des cycles problématiques. Ce n’est pas le cas de
la définition de o dans le nceud half, qui est parfaitement causale. En
effet, on voit qu’en dépliant la définition de o suffisamment, on peut
obtenir un nombre de valeurs arbitraire :

[o] = [true fby not o]
= true :: [not (true fby not o)]

= true :: false

= true :: false ::

= true :: false

2 [not (not o)]

[o]

it true iz [not o]

PROGRAMMATION SYNCHRONE 13

On écrit x :: xs pour le flot dont la téte est
le scalaire est x et la queue est le flot xs.
11 s’agit d'une opération qui n’est pas dis-
ponible telle quelle en Heptagon. On a

[er by e2] = [e]o = [e2].

PROGRAMMATION SYNCHRONE 14

On peut écrire beaucoup de programmes intéressants en combinant
I'opérateur fhy et des définitions récursives. En particulier, les défini-
tions mutuellement récursives. L'exemple suivant montre comment les
utiliser pour définir simultanément le flot nat des entiers naturels et

celui des entiers strictement positifs pos.
nat = 0 fby pos | 0o 1 2

pos = nat + 1 1 2 3

node j() returns (nat, pos : int)
let
nat

0 fby pos;
pos = nat + 1;
tel

Encore une fois, cette définition est causale : les flots nat et pos défi-
nissent tous deux une infinité d’éléments.

Question 6. Dépliez les définitions de nat et pos pour montrer qu’ils
contiennent au moins trois éléments chacuns, a la maniére de ce que nous
avons fait pour la sortie du neeud half.

Si l'opérateur fby est le plus important, deux autres opérateurs sont
également utiles : il s’agit de I'opérateur unaire pre et de l'opérateur
binaire -> (prononcer “init”). Leur sémantique est décrite par les équa-
tions suivantes. Alternativement, on pourrait définir

il sin=20 _Jleosin=0
[ere e} = {[[E]]nl sin>0 ler ->ealn = {[[ezﬂn sin >0

[pre e] = nil :: [e].

La sémantique de pre exige une explication. En Heptagon, on suppose
que chaque flot est capable de transporter une valeur spéciale bapti-
sée nil, qui représente un flot non initialisé. C’est la valeur produite par
I'opérateur pre au premier instant. Elle est absorbante par tous les opé-
rations arithmétiques et logiques — par exemple, nil + x = x + nil = nil.
Le compilateur Heptagon utilise une analyse d’initialisation pour s’as-
surer que cette valeur n’influe pas sur les résultats du calcul. Ainsi,
le noeud ci-dessous est rejeté puisque sa sortie n’est pas initialisée au
premier instant.

node i(x : int) returns (y : int)
let

y = pre x;
tel

Certains programmeurs préférent utiliser pre et -> a fby dans la me-
sure ol leur emploi permet de séparer proprement, lors de la définition
d’un flot x, le cas de base xy du cas inductif x,, ;1. Ainsi, pour définir le
flot nat, on peut partir de I'équation intuitive nat = 1 + pre nat, puis
l'initialiser via I'opérateur -> comme suit.

node k() returns (nat : int)
let

nat = 0 -> (1 + pre nat);
tel

Question 7. Pouvez-vous exprimer fby en utilisant uniquement pre et ->?

S’il peut étre tentant de remplacer systématiquement fby par 'usage
conjoint de pre et ->, il s’aveére plus naturel dans certaines situations.
Par exemple, pour donner une définition simultanée de nat et pos
comme vu précédemment.

Causalité. Les exemples précédents montrent I'importance des défini-
tions récursives dans la programmation synchrone a flots de données.
Néanmoins, la récursion est aussi utile que dangereuse : on a vu qu’il
est facile d’écrire des cercles vicieux, comme x = x. On peut envisager
ces équations de deux maniéres.

1. On peut décider que n’importe quelle suite en est solution, auquel
cas le langage devient non-déterministe.

2. On peut décider qu’elles n’ont pas de contenu calculatoire, c’est a
dire qu’on ne peut jamais obtenir le premier élément de x simplement
en dépliant ’équation. Elles ne sont pas causales.

En Heptagon, et dans ce cours, on va opter pour la seconde option, et
préserver le déterminisme du langage en rejetant ces cercles vicieux '7.
Quel critere algorithmique employer pour rejeter, tout en acceptant
la récursion mutuelle de codes tels que le nceud j défini plus haut?
La recherche en langages synchrones a proposé de nombreuses solu-
tions a ce probleme. Heptagon utilise une des plus simples d’entre
elles : les dépendances cycliques instantanées sont interdites. On peut
comprendre ce critére en dessinant le graphe de dépendance d’un noeud.
Il s’agit d’un graphe orienté dont les sommets x, y sont les variables
déclarées dans le nceud et les arcs x — y indique que y dépend de x. La
notion de dépendance est trés simple : y dépend de x si x apparait dans
la définition de y. En particulier, une entrée ne peut jamais dépendre
d’aucune variable puisqu’elle n’a pas de définition dans le corps du
nceud. On distingue, de plus, les dépendances instantanées des dé-
pendances retardées. Ces derniéres sont celles ou1 x apparait dans la
définition de y soit dans ’argument gauche d’une utilisation de 'opéra-
teur fby, ou dans 'argument d’une utilisation de 1'opérateur pre. Ainsi,
le noeud i est causal parce que nat dépend de pos de facon retardée, et
donc qu’aucun cycle instantané n’est présent (cf. figure 10, partie supé-
rieure). En revanche, si I'on utilise -> a la place de fby dans la définition
de nat, le graphe de dépendances devient cyclique (cf. figure 10, partie
inférieure). En d’autres termes, le flot nat2 dépend instantanément de
lui méme (a travers pos2).

PROGRAMMATION SYNCHRONE 15

nat
pos

0 fby pos;
nat + 1;

dép. instantanée

nat2 = 0 -> pos2;
pos2 = nat2 + 1;

dép. instantanée

dép. instantanée

FIGURE 10: dépendances et causalité.

17. D’autres langages synchrones comme
Signal optent pour le premier point de
vue. Les programmes écrits dans ces lan-
gages décrivent donc des relations plutot
que des fonctions. On peut lire I'article de
Le Guernic et al. [10] pour en apprendre
plus sur cette approche.

Question 8. Essayez de développer [nat2]. Que constatez-vous ?

Si vous essayez de compiler le bloc d’équation définissant nat2
et pos2, vous obtiendrez un message d’erreur analogue a celui donné
au tout début de cette section.

Causality error: the following constraint is not causal.
~pos2 < nat2 || "nat2 < pos2

La formule, ou contrainte, qui accompagne ce message est une représen-
tation compacte du graphe de dépendance de ce nceud. La premiére
sous-contrainte ~pos2 < nat2 indique que la lecture de pos2, represen-
tée par le préfixe *, doit avoir lieu strictement avant 'écriture de nat2,
puisque ce dernier en dépend. La deuxiéme, “nat2 < pos2, indique
que la lecture de nat2 doit avoir lieu strictement avant 1’écriture de pos2.
L'opérateur || indique que ces deux contraintes sont vraies en paral-
lele, c’est a dire simultanément. De plus, toute variable x induit une
contrainte implicite x < ~x (elle doit avoir été écrite avant d’étre lue).
On a donc la contrainte totale

~pos2 < nat2 || "™nat2 < pos2 || pos2 < "pos2 || nat2 < "nat2

qui n'est pas satisfiable, puisque la transitivité de l'ordre implique
que nat2 < nat2 et pos2 < pos2. Ce raisonnement est 1’analogue sym-
bolique de l'existence d'un cycle dans le graphe de dépendances.

Réinitialisation. On a vu avec les exemples précédents qu'Heptagon
disposait de trois opérateurs séquentiels primitifs : fby, pre et ->. Ces
opérateurs élémentaires peuvent étre combinés pour décrire des com-
portements temporels complexes. L'ensemble des opérateurs séquen-
tiels utilisés dans un nceud f, ainsi que dans les nceuds appelés depuis f,
détermine 'état de f. C’est 1’état du transducteur généré par le compi-
lateur heptc a partir de la fonction de flot écrite par le programmeur.

Il peut, dans certaines circonstances, étre utile de réinitialiser 1’état
d’un nceud, ou plus généralement d'un fragment de code. Pour ce faire,
Heptagon dispose d’une construction particuliere, dite de réinitialisation
modulaire. Contrairement aux constructions vues jusqu’a présent, elle ne
s’applique pas a une expression — ce n’est pas un opérateur — mais a
un bloc de définitions. Les valeurs calculées par reset block every c
sont celles calculées par le bloc block, mais 1’état interne de celui-ci est
réinitialisé lorsque la valeur courante du flot booléen c est vrai. Ainsi,
le code ci-dessous réinitialise le calcul des entiers naturels des que le
flot local c prend la valeur true.

node nat_reset() returns (o : int)
var ¢ : bool;
let

PROGRAMMATION SYNCHRONE

16

reset o = 0 fby (0o + 1); every c;
c = true fby false fby false fby c;
tel

Ainsi, le nceud k ci-dessus calcule une suite d’entiers périodique, comme
le montre le chronogramme suivant.

o| o 1 2 0 1 2 o 1 2
true false false true false false true false false

La construction de réinitialisation modulaire peut rendre un programme
difficile a comprendre, et est donc a utiliser avec parcimonie. On verra
qu’elle est surtout utilisée par la mécanique interne des compilateurs
synchrones, comme base pour des constructions de plus haut niveau.

Types structurés et énumérés. Heptagon permet la définition de types
structurés : types énumérés, types enregistrements, tableaux. Les types
enregistement ressemblent aux enregistrements d’'OCaml, ou encore
aux structs du langage C. Les types énumérés sont des types finis
dont chaque élément a un nom déclaré. Nous étudierons les tableaux
ultérieurement.

Les types structurés sont utilisables pour manipuler plusieurs valeurs
simultanément, en donnant un nom a chacune d’entre elles.

type cpl = { re : float; im : float }

fun add(x, y : cpl) returns (o : cpl)
let

o=1{re
tel

X.re +. y.re; im = x.im +. y.im }

fun conj(x : cpl) returns (o : cpl)
let

o={re=x.re; im = -, x.im }
tel

Le code ci-dessous fournit un exemple d’utilisation d'un enregistrement
pour manipuler des couples de flottants représentant des nombres com-
plexes. Le champ transportant la partie réelle est re et celui transportant
la partie imaginaire est im. Comme pour les types scalaires, un type
enregistrement décrit des flots d’enregistrements, et un enregistrement
littéral tel que { re = 1.0; im = 0.0 } représente un flot constant.
Le mot-clef fun utilisé dans le code ci-dessus indique au compilateur
Heptagon qu’on souhaite définir un nceud combinatoire. Si le corps de
la fonction dépend du temps, par exemple via l'utilisation de 'opéra-
teur fby, le programme sera rejeté a la compilation. Par conséquent,

PROGRAMMATION SYNCHRONE

b

c
a
S ROS080
a

FIGURE 11: automate pour (ab*c)™.

17

un neeud introduit par le mot-clef node peut appliquer une fonction
combinatoire (introduite par fun), mais la réciproque n’est pas vraie.
Un exemple d’utilisation des types énumérés est donné par le pro-
gramme ci-dessous, qui encode un automate fini reconnaissant le lan-
gage rationnel (ab*c)™* (cf. figure 11). On utilise les types énumérés
pour définir le type des lettres de 1’alphabet d’entrée, ainsi que le type
des états. Celui-ci comprend, en plus des états X, Y, Z, un état Dead
représentant I'état puits implicite dans les automates incomplets.

(x Type des lettres de l'alphabet d'entrée. x)
type alpha = A | B | C

(x Type des états de l'automate. x)
type astate = X | Y | Z | Dead

(* Automate reconnaissant le langage (a bx c)+. x)
node j(1 : alpha) returns (accept : bool)
var s, sprev : astate;
let
s = if (sprev, 1) = (X, A) then Y
else if (sprev, 1) = (Y, B) then Y
(Y, C) then Z
(Z, A) then Y

else if (sprev, 1)

else if (sprev, 1)
else Dead;
sprev = X fby s;
accept = (s = Z);
tel

Question 9. Dessinez un chronogramme représentant les six premiéres va-
leurs des flots 1, s, sprev et accept et oit les six premieres valeurs de 1
sonta,b,b,c,a,b,c,c,a,b,c.

Horloges

Entrelacement. Jusqu’ici, nous n’avons écrit que des exemples ol
chaque flot avance au méme rythme. Cette contrainte semble natu-
relle, dans la mesure oi1 1’on traite de fonctions synchrones. Néanmoins,
les langages synchrones comme Heptagon ou SCADE offrent une flexi-
bilité utile en pratique.

Question 10. Définissez le flot o tel que o] = k et [0]ox1 = 0.

Une réponse a cette question est fournie par le nceud ci-dessous.
Celui-ci définit le flot x des entiers naturels qui “bégaie”, c’est-a-dire,
oll chaque entier est répété deux fois. On utilise ensuite l'opérateur if
pour remplacer tous les éléments de rang impair par des 0.

PROGRAMMATION SYNCHRONE

18

true
[¢)
[¢)

false
0
0

true
1
1

false
1
)

node k() returns (o : int)
var x : int; h : bool;

let
x =0 fby 0 fby (x + 1);
= if h then x else 0;
h = true fby not h;
tel

Le code ci-dessus est critiquable : passer par la définition du flot x
est peu naturel. Peut-on réutiliser la définition du flot des entiers
naturels nat = 0 fby (nat + 1) donnée précédemment?

Question 11. Montrez que remplacer x par nat dans k définit un flot o tel
que [[o]ax = 2k et [o 1 = 0.

Ce qu’on voudrait faire, c’est entrelacer les valeurs du flot nat avec
celles du flot 0. Heptagon dispose d’une construction idoine, I'opéra-
teur d’entrelacement merge c el e2, qu’on peut comprendre comme
un cousin assez lointain de if ¢ then el else e2. Contrairement a
la conditionnelle, la fusion de flots n’est pas un opérateur point-a-
point. Informellement, lorsque le prochain élément de [c] est vrai (resp.
faux), la sortie de [merge c el e2] est produite en consommant un
élement de [el] (resp. [e2]), sans consommer celui de [e2] (resp. [el])
— contrairement & ce qui se passerait avec [if c then el else e2].

Avant de donner une définition plus rigoureuse du comportement
de I'opérateur d’entrelacement, il est utile de revenir & notre exemple,
reformulé avec 'aide de I'entrelacement pour définir o en fonction du
flot des entiers naturels sans bégaiement.

node 1() returns (o : int)
var x : int; h : bool;

let
x =0 fby (x + 1);
= merge h x 0;
h = true fby not h;
tel

Pour comprendre le fonctionnement de ce noeud, on peut suivre la
méme méthodologie que précédemment, et dessiner un chronogramme.
Pour ce faire, il faut décider comment les valeurs de chaque flot sont
calculées au cours du temps. Une premiere possibilité naive serait de
supposer que nat et h sont calculés au méme rythme, comme représenté
par le chronogramme ci-dessous.

h | true false true false true false true false true
X | o 1. 2. 3-__4-__35 6 7 8

+ N
0 o) Ag o "2

PROGRAMMATION SYNCHRONE

19

Sur ce chronogramme, on a représenté en rouge les dépendances entre
les valeurs du flot x et celles du flot 0. Chacune de ces valeurs, a
I'exception la premiere, est consommeée strictement aprés avoir été pro-
duite. Elle doit donc étre mémorisée. Plus précisément, a l'instant 2k, le
flot Jo] ne contient que les k premiéres valeurs de [x], et les k valeurs
suivantes doivent étre mémorisées. En d’autres termes, la quantité de
mémoire nécessaire pour exécuter semble croitre irrémédiablement en
fonction du temps. C’est inadmissible : du point de vue de SCADE et
Heptagon, un programme synchrone doit s’exécuter en utilisant une
quantité de mémoire bornée a la compilation.

Question 12. Quelle implémentation du neeud 1 pourrait garantir cette
propriété?

Pour exécuter ce programme en espace borné, il faut nécessairement
que le flot x soit produit plus lentement que le flot o, de sorte que ses
éléments soient disponibles juste i temps. C’est ce que le chronogramme
ci-dessous représente, les espaces vides marquant les instants auxquels
le prochain élément du flot correspondant n’est pas calculé.

h | true false true false true false true false true
19 b o 3 4
o| 0 o 1 0 2 o 3 o 1

On voit qu’en ralentissant x, on a réussi a aligner la production de ses
éléments avec leur consommation dans le flot o. Mémoriser les valeurs
de x n’est donc plus nécessaire.

On peut maintenant donner un sens précis a 'opérateur d’entrela-
cement. Sur le chronogramme précédent, on a marqué 1’absence d'un
flot par une case vide. En pratique, pour décrire I'opérateur d’entrelace-
ment, il est utile de disposer d"une valeur spéciale symbolisant I'absence,
notée abs, et qu’on peut aussi utiliser dans les chronogrammes.

h | true false true false true false true false true
x| o abs 1 abs 2 abs 3 abs 4
o| o 0 1 o 2 0 3 0 4

En manipulant la valeur spéciale abs, on peut désormais décrire la
sémantique de 1’'opérateur d’entrelacement.

[er]x si[c]x = true et [ex]x = abs
[merge c ey ezl = < [ea]x si [c]x = false et [e1]x = abs
abs si[c]y = abs et [e1]ly = abs et [ex]y = abs

On voit que cette définition est partielle. Lorsque le kéme élément du
flot [c] est vrai, [merge c el e2]; est défini si seulement si le keme
élément du flot [e2] est absent, et symétriquement. De plus, on conside-
rera que si [merge c el e2]; est indéfini, alors [merge c el e2]y est
également indéfini pour tout kK > k.

PROGRAMMATION SYNCHRONE 20

Cette formulation a 1’aide de valeurs absentes permet d’en faire une

fonction synchrone : les n premieéres valeurs de sa sortie dépendent
uniquement des 1 premiéres valeurs de ses entrées. C’est cette propriété
qui assure que l'opérateur d’entrelacement peut toujours étre utilisé
sans avoir a mémoriser implicitement ses entrées, et donc qu’il est
combinatoire! Le prix a payer est que les flots & entrelacer doivent
comprendre des valeurs absentes exactement aux rangs attendus, sans
quoi l'entrelacement est indéfini. Les langages synchrones a flots de
données comme Heptagon assurent cette propriété via une analyse
statique dédiée, baptisée calcul d’horloge.
Sélection. Le fonctionnement du calcul d’horloge est plus facile a
expliquer sur un opérateur qui joue un role inverse a celui de I'opérateur
d’entrelacement. Si I'opérateur d’entrelacement permet de combiner
plusieurs flots lents pour en obtenir un rapide, 'opérateur de sélection '®
transforme un flot rapide en flot lent par la suppression de certains de
ses éléments. Intuitivement, [e when c] est le flot [e] dont on a conservé
la valeur [e]y ssi [c] est vrai. Les autres valeurs sont remplacées par abs,
dans le but de rendre synchrone 1’opérateur de sélection.

[e]x si [c]x = true
abs si [c]y = false

[e when c]; = {

Question 13. Définissez un neeud envoyant un flot d’entiers y dans le flot o
tel que [o]ox = ket [o]ak1 = [ylax+1-
Il s’agit d"une variation sur le dernier nceud que nous avons défini.

Les valeurs de rang pair dans y doivent étre éliminées pour ne laisser
que les valeurs de rang impair.

node m(y : int) returns (o : int)
var x : int; h bool;
let

x =0 fby (x + 1);

o = merge h x (y when false(h));
h
tel

true fby not h;

On peut dessiner un chronogramme pour ce nceud ot1 les valeurs de y
sont laissées abstraites.

y Yo n Y2 Y3 Y4 Ys Ye
h true false true false true false true
X 0 abs 1 abs 2 abs 3
y when false(h) | abs vy abs y3 abs ys abs
0 w1 y3 2 y5s 4

PROGRAMMATION SYNCHRONE 21

18. 1l est aussi appelé opérateur d’échantillo-
nage (sampling en anglais) dans la docu-
mentation d’Heptagon et la littérature
scientifique.

La construction y when h n’est que du
sucre syntaxique pour y when true(h).

On constate bien que les flots [x] et [y when false(h)] ne sont jamais
présents au méme instant, ce qui est nécessaire au bon fonctionnement
de l'opérateur d’entrelacement avec la sémantique donnée plus haut.
Cette condition est vérifiée statiquement par le compilateur via le
calcul d’horloge. Pour vous en convaincre, essayez de compiler le nceud
précédent, en remplagant y when false(h) par y when h.

$ heptc badmerge.ept

(y when h) : File "badmerge.ept", line 5, characters 17-25:
> o0 = merge h x (y when h);

> AAAAAAAA

Clock Clash: this value has clock 'a on true(h),

but is expected to have clock 'a on false(h).

Ce message indique que l'expression y when h n’a pas la bonne hor-
loge. L'horloge d’une expression e est une formule qui décrit un flot
booléen ck tel que cky est vrai ssi [e]x # abs. Elle permet de s’assurer
que les valeurs transportées par le flot sont cohérentes avec son uti-
lisation. Ce n’est pas le cas dans 1’exemple qui nous occupe : d'une
maniere générale, le flot e when h a l'horloge 'a on true(h), indi-
quant qu’il est présent lorsque h est vrai, mais devrait avoir une horloge
de la forme 'a on false(h), puisqu’en tant que troisiéme argument
de merge h il est lu lorsque h est faux.

Heptagon emploie un jeu de regles pour décider de la cohérence des
horloges d'un programme. Nous n’allons pas rentrer dans les détails du
fonctionnement de ce systeme. Nous nous contenterons de préciser que
les horloges peuvent étre vues comme des types, et le calcul d’horloge
comme un systéme de types. Des versions simplifiées de quelques-unes
des regles de ce systéme sont présentées a la figure 12.

— La premiere régle spécifie que les deux arguments d’une addi-
tion doivent avoir la méme horloge, qui est également I'horloge du
résultat.

— La deuxiéme regle indique que les deux arguments de when doivent
étre présents aux mémes instants mais que la sortie est présente
lorsque, de plus, la condition (le premier argument) est vraie.

— La troisiéme regle spécifie que le deuxieme argument de merge doit
étre présent lorsque la condition est vraie, et le troisieme lorsque la
condition est fausse.

On peut illustrer la premiere des trois régles avec un exemple : le
programme ci-dessous est mal typé car les deux arguments de I'addition
ne sont pas présents aux mémes instants.

node n(x : int) returns (o : int)
var h : bool;
let

PROGRAMMATION SYNCHRONE

€1:C EQZC
€1+€22C
e:C x:C

e when b(x) : C on b(x)

x:C
e1: Con true(x)
e; : Con false(x)

merge x ey e3 : C

FIGURE 12: calcul d’horloge (extrait).

22

h
0 = X + (x when h);
tel

true fby not h;

(x when h) : File "badplus.ept", line 5, characters 11-19:
> 0 =X + (x when h);

> AAAAAAAA

Clock Clash: this value has clock 'a on true(h),

but is expected to have clock 'a.

Pour terminer notre discussion des horloges, on peut présenter un
exemple d’utilisation moins artificiel que les précédents.

Un neeud tres utile dans les programmes synchrone est I'intégrateur,
qui calcule une approximation numérique de l'intégrale de son flot
d’entrée. Le schéma d’intégration dit d’Euler explicite, implémenté dans
le nceud itgr ci-dessous, est sans doute le plus simple a programmer.

node itgr(x, h, ini : float) returns (o : float)
let

0 = (ini fby o) +. h *. Xx;
tel

L’entrée x est le flot a intégrer, le flot ini la valeur initiale de 1'inté-
grateur, et le flot h donne le pas d’intégration, qu’on peut comprendre
comme le temps physique écoulé depuis l'instant logique précédent.
Si h est suffisamment petit, les valeurs successives de y offrent de
bonnes approximations de l'intégrale de Riemann de x.

Imaginons maintenant qu’on veuille rajouter une entrée supplémen-
taire a l'intégrateur : un flot booléen en qui contrdle a quels instants x
doit étre intégré. Lorsque en est faux, la sortie doit conserver la valeur
qu’elle avait a I'instant précédent. Ce type d’intégrateur est trés utile.
On peut programmer cet intégrateur interruptible en combinant tous les
opérateurs vus juqu’a présent : entrelacement, sélection et opérateurs
séquentiels.

node itgr_enable(x, h, ini : float; en : bool)
returns (o : float)
var oi : float;
let
0i = itgr(x when en, h when en, ini when en);
0 = merge en oi ((ini fby o) when false(en));
tel

Un point important est qu’en Heptagon, les nceuds sont automatique-
ment polymorphes vis-a-vis des horloges : on peut appliquer itgr a des
arguments sur une horloge quelconque, du moment que cette horloge
est la méme pour les trois arguments.

PROGRAMMATION SYNCHRONE 23

Question 14. Donnez un chronogramme pour ce nceud, en prenant comme
premieres valeurs : pour le flot en, les valeurs true, true, false, true, false;
pour ini, le flot constant 0.0; pour h le flot constant 0.2; pour le flot x,
des valeurs abstraites x(, X1, X2, X3, X4.

Question 15. Que se passe-t-il si on remplace I'équation pour oi dans le
neeud itgr_enable par oi = itgr(x, h, ini) when en? Pouvez-vous
expliquer ce résultat par un chronogramme ?

Automates

Les constructions manipulant les horloges, merge et when, sont des
ingrédients essentiels aux langages comme Heptagon et SCADE. On a
toutefois vu que leur maniement requiert un certain doigté, puisqu’il
exige de comprendre un tant soit peu le fonctionnement du calcul d’hor-
loge. En pratique, les programmeurs utilisent plutét des constructions
de contrdle, qui permettent d’activer et désactiver des blocs d’équa-
tion de diverses maniéres. Heptagon et SCADE réduisent ensuite ces
constructions a celles sur les horloges durant le processus de compila-
tion. Nous allons maintenant discuter de ces constructions de controle,
qui permettent notamment la programmation directe d’automates.

Pour notre premier exemple de construction de contrdle, nous allons
réimplémenter le nceud j, qui reconnait le langage (ab*c)™.

type alpha = A | B | C

node p(l : alpha) returns (accept : bool)

let
automaton
state X
do accept = false
unless 1 = A then Y | true then Dead
state Y
do accept = false
unless 1 = B then Y | 1 = C then Z | true then Dead
state Z
do accept = true
unless 1 = A then Y | true then Dead
state Dead
do accept = false
end

tel

PROGRAMMATION SYNCHRONE 24

Son interface n’a pas changé. En revanche, son corps n’est plus formé
directement d'un ensemble d’équations, mais d'un automate, intro-
duit par le mot-clef automaton. Un automate doit spécifier une liste
d’états, introduits par le mot-clef state, le premier d’entre eux étant par
convention 1'état initial " de ’automate. Chaque état a un nom qui doit
commencer par une majuscule. Chaque état spécifie un bloc d’équations
apres le mot-clef do, et éventuellement une liste de transitions. Seules
les équations de 1’état courant de I’automate sont actives et dictent la
valeur des variables correspondantes. Par exemple, une transition

unless cl then S1 | c2 then S2 | ... | cN then SN

spécifie que si la condition c1 s’évalue a vrai, le prochain état est S1;
sinon, on évalue c2, et le prochain état devient S2 si cette condition
s’évalue a vrai; sinon, on évalue c3, et ainsi de suite. Si aucune condition
n’est vraie, on reste dans 1’état courant. Il existe des transitions de
diverses sortes, que nous allons décrire tout de suite.

Transitions fortes et faibles. Comme on 1'a vu, chaque état d"un automate
peut contenir plusieurs transitions de sortie, contrdlées par des condi-
tions booléennes. Dans 1'exemple précédent, on a utilisé des transitions
de type unless, dites transitions fortes. Les conditions des transitions
fortes sont testées au début de I'instant courant, 1’état correspondant
n’est donc pas activé si I'une d’entre elles est vraie. Ainsi, le nceud a@
ci-dessous produit le flot constant true car ’équation o = false n’est
jamais active — il entre dans 1’état B au début du premier instant.

node al() returns (o : bool)

let
automaton
state A
do o = false
unless true then B
state B
do o0 = true
end
tel

En plus des transitions fortes, on dispose également de transitions faibles.
Les conditions des transitions faibles sont testées a la fin de I'instant,
et déterminent donc I'état dans lequel 'automate commencera l'instant
suivant. Ainsi, le nceud al ci-dessous produit le flot [false fby true],
car la condition est testée a la fin du premier instant — 1’état B est donc
actif a partir du deuxiéme instant.

node al() returns (o : bool)
let

PROGRAMMATION SYNCHRONE 25

19. Contrairement aux automates étudiés
dans les cours de langages formels, les
automates d'Heptagon n’ont pas a pro-
prement parler d’état final, puisqu’ils
ne reconnaissent pas un langage mais
controlent quelles équations sont actives
a quel instant.

automaton
state A
do o = false
until true then B
state B
do 0 = true
end
tel

Comment choisir entre transitions faibles et fortes ? Il existe une diffé-
rence importante entre ces deux types de transitions du point de vue
de la causalité. Les conditions des transitions fortes étant testées au
début de I'instant, les variables définies dans le corps de 1’état sortant
dépendent instantanément de celles lues dans les conditions. Pour cette
raison, la variante des noeuds ci-dessous n’est pas causale.

node a2() returns (o : bool)

let
automaton
state A
do o = false
unless not o then B
state B
do o = true
end
tel

Dans ce programme, la définition de o dans I'état A dépend instan-
tanément de la valeur de o, puisque savoir si elle est active exige de
tester la condition not o de la transition forte, condition qui dépend
instantanément de o. Le compilateur Heptagon illustre ce fait via le
message d’erreur suivant.

Causality error: the following constraint is not causal.
“0o<o0|] o

Ce probleme ne se pose plus si 'on remplace la transition forte par une
transition faible, comme ci-dessous. La condition not o étant testée a la
fin de l'instant, la définition de o n’en dépend que de fagon retardée,
et ce programme n’a pas de probleme de causalité. Le résultat est

équivalent a al.

node a3() returns (o : bool)
let
automaton
state A
do o = false

PROGRAMMATION SYNCHRONE 26

until not o then B
state B
do o = true
end
tel

En regle générale, les programmeurs synchrones ont tendance a
préférer par défaut les transitions faibles aux transitions fortes, puis-
qu’elles évitent d’avoir a se soucier de certaines boucles de causalité.
11 existe toutefois des programmes ot il est plus commode dutiliser
les transitions fortes, comme par exemple I'automate reconnaissant le
langage régulier (ab*c)™.

En Heptagon, un automate ne peut effectuer qu'un seul changement
d’état par instant dans la plupart des cas : la sémantique du langage
interdit de quitter un état par une transition forte pour entrer dans un
nouvel état et en sortir immédiatement par une autre transition forte.
Par exemple, le noeud a4 ci-dessous produit le flot [2 fby 3] car l'état A
n’est jamais actif, mais qu’on ne peut pas sortir immédiatement de
l'état B par une transition forte alors qu’on vient d’y entrer au premier
instant.

node a4() returns (o : int)

let
automaton
state A
doo=1
unless true then B
state B
do o =2
unless true then C
state C
do o =3
end
tel

Il existe une seule exception a cette régle, oli un automate peut effectuer
deux transitions en un instant, et donc passer par un état transitoire
qui n’est jamais actif. Elle se produit lorsqu’on sort d’un état A par une
transition faible a la fin de l'instant n pour entrer a 'instant # 4+ 1 dans
un état B qui dispose d’une transition forte dont la condition est vraie
et qui méne a un état C. Dans ce cas, les définitions de I'état B ne sont
jamais actives, et ’automate passe directement de I'état A a 1’état C.

node a5() returns (o : int)
let
automaton

PROGRAMMATION SYNCHRONE 27

state A

doo=1

until true then B
state B

do o =2

unless true then C
state C

do o =3

end

tel

Le nceud a5 ci-dessus illustre ce comportement : a la fin du premier
instant, il passe a 1’état B, mais en sort au début du deuxieme instant

pour entrer directement dans I'état C. Il produit donc le flot [1 fby 3].

Programmer principalement avec des transitions faibles évite d’avoir a
se préoccuper des enchainements faible/forte.

Transitions réinitialisantes et continuantes. Le nceud suivant comprend
un automate a deux états qui passe de I'état initial A a 1’état B apres
trois instants via une transition faible, avant de repasser a I'état A un
instant plus tard. Comment évolue son flot de sortie?

node fO() returns (o : int)
let
automaton
state A
do o = 0 fby (o + 1)
until o >= 3 then B
state B
do o = 42
until true then A
end
tel

La sortie de f0 est périodique, comme le montre ce chronogramme.

’0‘012342012342012342

Ce comportement est causé par les transitions de la forme c then S

qui, qu’elles soient faibles ou fortes, réinitialisent leur état d’arrivée.

On dit que de telles transitions sont réinitialisantes. Autrement dit, le
flot des entiers naturels définis dans 1'état A est réinitialisé lors de la
transition qui y entre depuis B. De la méme maniére, le nceud suivant
produit la suite périodique (0123)«.

node f1() returns (o : int)
let

PROGRAMMATION SYNCHRONE 28

La notation u%“, o1 u est un mot fini, dé-
signe le flot périodique formé par la ré-
pétition continuelle du mot u.

PROGRAMMATION SYNCHRONE 29

automaton
state A
do o =0 fby (o + 1)
until o >= 3 then A
end
tel

Le fait qu'un état soit réinitialisé est un comportement souvent com-
mode lors de l'écriture d'un programme réactif. Il permet de com-
prendre 1'évolution d'un état S en isolation des autres, sans avoir a
considérer les transitions qui meénent a S. Cependant, il est parfois
commode de ne pas réinitialiser un état. Pour cette raison, Heptagon
offre un autre type de transition, les transitions continuantes. Celles-ci,
notées ¢ continue S, permettent d’entrer dans l'état S sans le réinitia-
liser. Elles peuvent étre fortes ou faibles, tout comme les transitions
réinitialisantes.

Question 16. Quel est le flot produit par le nceud 2 ci-dessous ?

node f2() returns (o : int)
let
automaton
state A
do o =0 fby (0o + 1)
until o >= 3 then B
state B
do o0 = 42
until true continue A
end
tel

Question 17. Comment simplifier le nceud 3 ci-dessous ?

node f3() returns (o : int)

let
automaton
state A
do o = 0 fby (o + 1)
until o >= 3 continue A
end
tel

Meémoire partagée. Les constructions relatives aux automates vues jus-
qu’ici permettent de programmer rapidement des structures de controle 10 10
. . P . P - +

complexes. Il leur manque toutefois un ingrédient essentiel. Pour s’en ® I 5]

convaincre, essayez d’implémenter la spécification suivante. b R 5

FIGURE 13: interface du nceud switch3.

Question 18. Programmez un neeud Heptagon switch3 ayant :

— une entrée booléenne b représentant les pressions sur un bouton de com-
mande;

— une entrée entiére s représentant la position d'un curseur, qu’on supposera
comprise entre —10 et 10;

— une sortie entiere o, initialisée a 0, qu’on imaginera affichée sur un écran.

La figure 13 présente une vision figurative d’une hypothétique interface gra-
phique comprenant bouton, curseur, et afficheur. De plus, le nceud switch3
doit obéir a la spécification suivante :

— il commence son exécution dans un état oir o n’évolue pas;

— apres une pression sur le bouton de commande, il passe dans un état oit o
est incrémenté de la position courante du curseur;

— apres une nouvelle pression sur le bouton de commande, il passe dans un
état oir o est multiplié par la position courante du curseur;

— Enfin, une derniére pression le raméne dans I'état initial.

On pourrait essayer de programmer un tel automate avec trois états
connectés par des transitions continuantes, comme suit.

node switch3bad(b : bool; s int) returns (o : int)
let
automaton
state Idle
do o=0 ->preo

unless b continue Increment
state Increment

do o= (0 -> pre 0) + s

unless b continue Multiply
state Multiply

do o= (0 -> pre 0) * s

unless b continue Idle

end;

tel

Toutefois, le comportement de cet automate n’est pas le bon, comme en
témoigne le chronogramme ci-dessous.

b|l1 o o 1 o 1 1 0 O 0
s|1 2 3 5 5 2 2 1 1 5
o|1 3 6 0o o0 o 8 9 10 12 0

Ce chronogramme montre que 1'opérateur pre o, utilisé dans un état S,
fait référence a la valeur de o a son instant de définition précédent, c’est
a dire, a I'instant d’activation précédent de S. Autrement dit, toutes les

PROGRAMMATION SYNCHRONE 30

définitions de o sont purement locales a chaque état, et peuvent étre
considérées indépendamment.

Cependant, pour respecter notre spécification, nous voudrions plutot
que la sortie o soit une mémoire partagée globalement entre les différents
états de I'automate. On peut obtenir un tel comportement via le mot-
clef last. Celui-ci, utilisé dans une déclaration de variable, permet de
faire de celle-ci une mémoire partagée. Utilisé dans une expression, il
permet d’accéder a la valeur d’une mémoire a l'instant précédent=°.
De plus, une mémoire peut étre initialisée, auquel cas elle n'a pas a
recevoir de définition dans tous les états de I’automate — elle conserve
implicitement sa valeur précédente en 1’absence de définition.

En faisant de la sortie o une mémoire partagée, on peut réécrire
I'exemple précédent comme suit.

node switch3(b int = 0)
let
automaton
state Idle
do

unless b then

bool; s int) returns (last o

Increment
state Increment

do o = last o
unless b then
state Multiply
do o = last o

unless b then

+'s
Multiply

* S
Idle

end
tel

On obtient alors le chronogramme ci-dessous.

b|/1 o o 1 o 1 o 1 o0 O 0 1 0

0
s|{1 2 3 1 5 5 2 2 1 1 2 2 0 §5
0

0|1 3 6 6 30 30 30 32 33 34 36 72 0

En effet, la valeur last o lue dans lI’état Increment est bien la der-
niere définie dans n'importe lequel des états de 'automate, y compris
dans Multiply, et similairement pour la valeur lue dans I'état Multiply.

PROGRAMMATION SYNCHRONE 31

20. Il est interdit d’utiliser last sur une
variable qui n’a pas été déclarée comme
étant une mémoire.

Autres constructions de contrdle. En plus des automates, Heptagon
dispose de quelques autres constructions de contrdle plus légeres, plus
simples a utiliser lorsqu'un automate général n’est pas nécessaire.

— La construction if/then/else permet de sélectionner en fonction
d’un condition booléenne lequel de deux blocs activer.

— La construction switch généralise la précédente en permettant d’ac-
tiver un bloc d’équations selon la valeur d’un flot énuméré.

— Enfin, la construction present généralise la construction switch en
permettant de sélectionner la branche a activer en fonction d’une
série de conditions booléennes testées successivement. On peut éven-
tuellement spécifier un bloc a activer lorsque toutes les conditions
sont fausses via le mot-clef default.

Dans les trois constructions ci-dessus, les flots permettant la sélection
du bloc d’équations doivent étre calculés par des expressions combina-
toires. Cette condition est vérifiée par le compilateur Heptagon.

Tableaux et itérateurs

En plus des enregistrements, Heptagon offre un autre type de don-
nées : les tableaux, c’est-a-dire des séquences finies d’éléments de méme
type. Ceux-ci fonctionnent largement comme les tableaux des langages
fonctionnels. On va maintenant détailler les constructions relatives aux
tableaux, en commencant par les plus simples.

Types tableaux. Comme dans la plupart des langages de programma-
tion typés, les tableaux d’'Heptagon sont homogenes : ils contiennent
des éléments du méme type. Contrairement a un langage comme Java
ou OCaml, ils sont d"une taille fixée a la compilation. Cette taille doit
étre spécifiée par une expression statique, c’est a dire une expression dont
la valeur peut étre calculée a la compilation — on décrira le fonctionne-
ment de ces expressions plus loin dans cette section. La notation est t”s,
ol t est un type et s une expression statique, désigne les tableaux de
type t de taille s. Comme tous les types d"Heptagon, ce type désigne
en réalité un flot, flot qui transporte des tableaux. Ainsi, le type int~10
désigne les flots de tableaux de taille 10 d’entiers, le type float~15°30
désigne les flots de tableaux de taille 30 de tableaux de taille 15 de
nombres flottants.

Constructions de base. La fagon la plus simple de créer un nouveau
tableau est de spécifier chacun de ses éléments. Le littéral [eq, ey, ..., €5]
désigne le flot de tableau de taille s dont les éléments sont calculées
par les expressions ¢;, qui doivent par conséquent toutes avoir le méme

PROGRAMMATION SYNCHRONE 32

type color = Green | Amber | Cyan

fun color2rgb(c : color)
returns (r, g, b : float)
let
switch ¢
| Green
dor=20.0; g=1.0; b=20.0;
| Amber
dor=1.0;9
| Cyan
dor=20.0; g=1.0; b=1.0;
end

tel
fun sign(x : float)

returns (o : float)

[}
(=)
S
U
o

[}
(o]
s

let
present

| x >. 0.0 do o= 1.0
| x <. 0.0 doo=-.1.0
default do o = 0.0
end
tel

PROGRAMMATION SYNCHRONE 33

type. Si tous les éléments du tableau sont les mémes, on peut écrire a

la place e~n, raccourci pour [e,...,e] ol e apparait n fois. ol | [1,23] [1,2 3]
02 | [42, 42, 42] [42, 42, 42]

node arr@() returns (ol, 02, o3 : int"3) 03 [1, 23] [42, 42, 42]
let

ol=1[1, 2, 31;

02 = 4273;

03 = ol fby o02;
tel

Le nceud ci-dessus produit trois sorties, toutes trois des flots de ta-
bleaux d’entiers de taille 3. Les deux premieres sont des flots constants,
contrairement au troisieme. Le nceud ci-dessous donne un exemple plus
intéressant de flot de tableaux qui évolue au cours du temps. Le n-eme

tableau transporté par le flot o est [, n + 1]. n| o 2 4
o|[o1] [23] I[45]

node arrl() returns (o : int"2)
var n : int;

let
n==0 fby (n+ 2);
o=[n, n+11];
tel

Comme la plupart des langages de programmation, Heptagon per-
met 'acceés indicé au contenu d’un tableau. Le langage étant dédié
aux systemes critiques, 1’acces indicé y est plus rigide que dans des
langages généralistes o1 un acces en dehors des bornes du tableau peut
étre détecté dynamiquement. On va tout d’abord voir les méthodes
d’acces indicé les plus restrictives et sfires, avant d’aborder les autres.

L’expression a[i], ol a est une expression de type tableau t"n
et i une expression statique, désigne le contenu de la i-eme case du
tableau a. L'expression i étant statique, le compilateur Heptagon peut
vérifier statiquement que son résultat appartient bien a l'intervalle [0, n].

Bien que limités, les acces indicés constants permettent déja d’écrire
des neeuds intéressants. Par exemple, un registre a décalage stocke un
nombre codé sur n bits, et produit périodiquement les bits de 7, du bit
de poids le plus fort au bit de poids le plus faible. Le nceud ci-dessous
implémente un registre a décalage sur trois bits qui passe au bit suivant
lorsque son entrée sh est vraie. L'entrée ini fournit I'entier & stocker
initialement — sous sa forme de tableau de bits.

node shiftr3(ini : bool”3; sh : bool) returns (o : bool)
var mem, nxt : bool"3;

let
mem = ini fby nxt;
nxt = if sh then [mem[2], mem[0], mem[1]] else mem;

o = nxt[2];
tel

Si le flot ini vaut [true, false, true] au premier instant, on peut
obtenir par exemple le chronogramme suivant.

sh 0 1 0 o 1 1
mem ([1,0,1] [1,0,1] [1,1,0] [1,1,0] [1,1,0] Io, 1,1]
nxt |[1,0,1] [1,1,0] [1,1,0] [1,1,0] [o,1,1] [1,0 1]
0 1 (0] (0] 0 1 1

Question 19. Pouvez-vous réimplémenter le neeud shiftr3 en remplagant
les variables mem et nxt, de type bool”3 par des variables de type bool ?

Heptagon permet aussi d’accéder a une cellule d’un tableau dont
l'indice a été spécifié par une expression dont la valeur n’est pas connue
avant 1’exécution. Le compilateur ne pouvant pas vérifier que cet acces
est stir a la compilation, cette construction exige de fournir une valeur
par défaut qui sera utilisée en cas d’accés hors des bornes du tableau.
On écrit a. [e] default d pour signifier qu’on veut accéder a la case
d’indice [e] du tableau [a], avec [d] la valeur a utiliser si [e] n’est pas
comprise entre 0 et s — 1, avec s la taille de a. Plus formellement,

lalx(le]n] si0 < [e], < s

. default di, =
[2-Te] defau I {[[d]]n sinon.

Une autre possibilité, plus rarement utilisée, est de tronquer le résultat
de l'expression calculant 'indice pour le ramener dans les bornes du
tableau. Cette construction s’écrit a[>e<], et sa sémantique est

[al>e<1]; = [a]n[min(max([e],,0),s — 1)].

Enfin, on peut également lire une tranche de tableau, c’est a dire un sous-
tableau formé d’un nombre contigu de cellules. La tranche a[lo .. hi]
doit étre définie par deux expressions statiques lo et hi, de sorte a
ce que la taille hi - 1o + 1 du sous-tableau lu soit calculable a la
compilation.

En plus de lire les cellules d'un tableau, on peut également modi-
fier ses cellules. Heptagon étant un langage fonctionnel, cette mo-
dification résulte en un nouveau tableau, laissant 1’original intact.
Ainsi, [t with [e] = v] construit a I'instant n un nouveau tableau
identique a t a l’exception de la cellule d’indice [e],, dont la valeur est
remplacée par [v],. Si [e], est en dehors des bornes du tableau [a],, la
modification n’a pas lieu et le résultat est identique a [a],.

A l'aide de ces constructions, on peut écrire par exemple un buffer
circulaire stockant des entiers. Un buffer circulaire est un composant
mémorisant d'une taille fixée, disons 7, qui enregistre les éléments d'un

PROGRAMMATION SYNCHRONE 34

r_idx

w_idx

FIGURE 14: buffer circulaire a l'instant 5.

flot d’entiers pour les produire a un instant ultérieur. Celui que nous
allons programmer dispose de trois entrées et d"une sortie.

— L’entrée e fournit un flot d’entiers dont I'élement courant doit étre
stocké lorsque I'entrée booléenne w est vraie.
— L’entrée booléenne r indique si la prochaine valeur du buffer a été

consommée dans la sortie o.

En particulier, la valeur de I'entrée e n’est pertinente que lorsque w est
vrai, et similairement pour o et r.

const n : int = 10

node ring_buffer(e : int; w, r : bool) returns (o : int)
var r_idx, w_idx : int; pa, a : int"n;
let

0 = a.[r_idx] default 0;

pa = (0”n) fby a;

if w then [pa with [w_idx] = e] else pa;
r_idx = 0 fby (((if r then 1 else 0) + r_idx) % n);
w_idx = 0 fby (((if w then 1 else 0) + w_idx) % n);

tel

a =

Le code ci-dessus implémente un tel buffer circulaire en utilisant deux
flots d’entiers, w_idx et r_idx, qui contiennent respectivement les pro-
chains indices auxquels écrire et lire. Le flot de tableaux a transporte le
contenu stocké par le buffer.

e 5 12 10 9 8 7 1 3
w | true true false true true false true false
r | false false true false true false true true
o 5 5 5 12 12 9 9 8

La figure 14 représente le contenu du buffer au cinquiéme instant, ainsi
que les indices d’écriture et lecture. On a verdi les cases contenant des
valeurs stockées depuis le début de I'exécution.

Question 20. Ecrivez une variante ring_buffer_clocked en utilisant les
horloges pour spécifier que 'entrée e n’est présente que lorsque le flot w vaut
vrai, tandis que la sortie o n’est présente que lorsque le flot r vaut vrai.

Question 21 (Plus difficile). Ecrivez une variante ring_buffer_checked
dotée d'une sortie supplémentaire err qui est vraie lorsque r est vrai mais
qu’il n'y a rien a lire, ou bien lorsque w est vrai mais qu’il n'y a plus d’espace
pour écrire.

Une derniere construction élémentaire de manipulation de tableaux

est la concaténation, notée al @ a2, qui résulte en un tableau dont la
taille est la somme des tailles de al et de a2.

PROGRAMMATION SYNCHRONE 35

Expressions et parametres statiques. Dans l'exemple du buffer circulaire
donné précédemment, la taille du tableau interne est dictée par la
valeur d'une constante n déclarée au début du fichier. Avoir isolé cette
constante de la sorte permet de changer trés facilement la taille du
tableau. Néanmoins, cette solution reste peu satisfaisante, puisqu’elle
ne permet pas d’utiliser des buffers circulaires de tailles différentes
dans un méme programme, a moins de copier-coller le code.

Pour pallier ce défaut, Heptagon permet de déclarer des parametres
statiques, qui sont des parametres inconnus mais dont la valeur doit étre
fixée a la compilation. Ils sont introduits entre double chevrons, avant
les parametres normaux du nceud, comme dans la variante paramétrée
du buffer circulaire qui suit.

node ring_buffer<<n : int>>(e : int; w, r : bool)
returns (o : int)
var r_idx, w_idx : int; pa, a : int"n;
let
0 = a.[r_idx] default 0;
pa = (0°n) fby a;
a = if w then [pa with [w_idx] = e] else pa;

r_idx = 0 fby (((if r then 1 else 0) + r_idx) % n);
w_idx = 0 fby (((if w then 1 else 0) + w_idx) % n);
tel

Lors d'un appel, la liste des arguments statiques doit étre fournie entre
double chevrons également, avant les arguments normaux. Ainsi, le
code ci-dessous appelle deux fois le buffer circulaire, chaque fois avec
une taille différente.

node test_buffer() returns (rl : bool; ol : int;
r2 : bool; 02 : int)
var e : int; w : bool;

let
e =0 fby (e + 1);
w = true fby true fby false fby false fby w;

rl = false fby false fby true fby true fby ril;
0l = ring_buffer<<2>>(e, w, rl);
r2 = true fby false fby r2;
02 = ring_buffer<<l>>(e, w, r2);
tel

Question 22. Donnez un chronogramme pour le nceud test_buffer. Que
se passe-t-il si on passe I'argument statique 1 au buffer dont la sortie est 017?

Les expressions statiques sont celles qui apparaissent dans les tailles
des tableaux, dans les acces indicés statiques, ou encore comme ar-
guments des nceuds disposant de parametres statiques. Elles peuvent

PROGRAMMATION SYNCHRONE 36

PROGRAMMATION SYNCHRONE 37

faire référence aux constantes globales (comme n dans la premiere [t = map<<n>> fe) |

implémentation du buffer circulaire), ou bien aux parametres statiques e[0] e[n —1]
du nceud courant (comme dans le code ci-dessus). Elles peuvent utiliser L L
la plupart des opérateurs combinatoires d’"Heptagon, notamment les [

opérateurs arithmétiques. Il est ainsi possible de déclarer une variable 1 1
de type int~(n + 1) ol n est une constante statique. En revanche, les t[0] tln—1]

opérateurs séquentiels comme fby ne sont pas autorisés. .
’o = fold<<n>> f(e, 1)‘

) . : 'y ek e[0] eifn —1]
Itérateurs. Les constructions sur les tableaux vues jusqu’a présent 1 1

ne permettent que d’accéder a un nombre fixé de cases d’un tableau.
i=f f > o f 2o

Par exemple, nous ne pouvons pas exprimer un registre a décalage

générique qui fonctionnerait pour toute taille de tableau. Heptagon

propose sous le nom d’itérateurs des constructions pour parcourir les ’ (t, 0) = mapfold<<n>> f(e, i) ‘
cases d’'un tableau en effectuant divers traitement. Elles constituent des e[0] eln —1]
variantes des fonctions d’ordre supérieur classiques sur les séquences 1 1

bien connues par les amateurs de langages fonctionnels. On va décrire N IO BN

les principaux itérateurs, en associant a chacun sa regle de typage.

— La construction map<<n>> prend une fonction f recevant k entrées et t[0] tln—1]
produisant [sorties, et applique indépendamment f aux n éléments FIGURE 15: trois principaux itérateurs.

de k tableaux pour obtenir n éléments de [tableaux en sortie.

frap X -+ Xap—>by X - Xb e;:ar’™n er:a’'n

map<<n>> f(eq,...,er) by n X - X b™n

— La construction fold<<n>> prend une fonction f recevant k + 1
entrées et produisant une sortie, et 'applique successivement aux
éléments de k tableaux de taille #.

f:ag X+~ XaXc—c
e;:a1’™n er:ay’'n i:c

fold<<n>> f(eq,..., e 1) : ¢

— La construction mapfold<<n>> prend une fonction f recevant k + 1
entrées et produisant [4 1 sorties. Elle combine les deux construc-
tions précédentes.

frapX---XapgXc—=>by X---XbyXc
e;:a1™n er:ay’'n i:c

mapfold<<n>> f(ey,..., e, 1i):b1"n X - - X b "nxc

La figure 15 représente graphiquement le fonctionnement de ces trois
itérateurs. Pour éviter de surcharger visuellement cette figure, on a
choisi de ne représenter que le cas ot k = = 1.

En plus des itérateurs map, fold et mapfold, Heptagon propose des
variantes qui recoivent un argument supplémentaire correspondant a

I'indice courant dans le tableau. Ces variantes, mapi, foldi et mapfoldi,
peuvent étre programmeées en fonctions des précédentes mais sont si
utiles qu’elles sont intégrées au langage. L’argument supplémentaire
recevant l'indice est placé en derniére position. Nous vous renvoyons
au manuel d’"Heptagon pour plus de détails.

A l'aide des itérateurs, on peut finalement programmer un registre
a décalage générique en la taille du tableau a mémoriser. Le code est
donné ci-dessous. Il utilise une fonction auxiliaire shiftr_aux pour
implémenter le décalage.

fun shiftr_aux(a, acc : bool) returns (b, newacc : bool)
let

b = acc;

newacc = aj;
tel

node shiftr<<n : int>>(ini : bool”n; sh : bool)
returns (o : bool)
var mem, nxt, sft : bool”™n; d : bool;
let
mem = ini fby nxt;
(sft, d) = mapfold<<n>> shiftr_aux(mem, mem[n-1]);
nxt = if sh then sft else mem;
o = nxt[n-11;
tel

Question 23. A quoi ressemble la représentation de mapfold donnée a la fi-
gure 15 lorsque vous remplacez f par le corps de shiftr_aux?

Optimisations sur les tableaux. Les tableaux d"Heptagon sont persistants,
c’est a dire qu’ils fabriquent de nouvelles valeurs sans modifier les
tableaux existants. Cette propriété rend leur comportement facile a
décrire mathématiquement ainsi qu’a comprendre. En revanche, cela
signifie qu'une implémentation naive de cette partie du langage est
assez coliteuse. Par exemple, toute opération de modification de ta-
bleau [t with [i] = e] doit commencer par copier le tableau t,
avant de modifier la case d’indice i de la copie. Le compilateur Hep-
tagon emploie donc diverses optimisations pour minimiser le nombre
de copies. Il essaie également de fusionner les itérateurs imbriqués
de sorte a minimiser le nombre de parcours de chaque tableau et a
éliminer les tableaux intermédiaires. Par exemple, lorsque map<<n>> f
est appliqué a map<<n>> g, le compilateur construit une fonction h qui
associe f(g(x)) a x, et remplace les map imbriqués par map<<n>> h.
Cette transformation, I'élimination de copie, et d’autres optimisations
encore sont activées en passant I’option -0 a heptc.

PROGRAMMATION SYNCHRONE 38

Pour en savoir plus, référez vous a l'ar-
ticle de Gérard, Guatto, Pasteur et Pou-
zet [7] au sujet de 1’ajout de l'intégration
des tableaux a un langage synchrone.

Applications

Programmation audio en temps-réel

La programmation audio en temps-réel produit et traite des flots
d’échantillons sonores a une fréquence relativement élevé (44.1 kHz).
II se trouve que certains de ces traitements s’écrivent assez facilement
dans un langage synchrone tel qu'Heptagon. Le sous-dossier audio/
contient un exemple d’un tel programme écrit en Heptagon.

Controle d’'un pendule inversé

Comme on 1'a vu, la plupart des applications des langages syn-
chrones vont chercher a controler des systémes réactifs, en mettant en
jeu des techniques issues de ’automatique. Un probleme de controle
se présente abstraitement comme a la figure 16. Il met en un jeu deux
acteurs, un contrdleur et un procédé. Le controleur observe le procédé
en recueillant une certaine mesure; son objectif est de faire en sorte
que cette mesure soit égale a une certaine consigne. Autrement dit, le
controleur cherche a réduire 1'erreur, c’est-a-dire la distance entre la
mesure et la consigne, a zéro. Pour ce faire, il agit sur le procédé en
fixant une commande.

Cette description abstraite s’applique s’applique a un grand nombre
de situations. On va s’intéresser & une situation classique en automa-
tique, le contrdle d'un pendule inversé. Dans cette situation, le contro-
leur cherche a maintenir a la verticale un bras a 1'extrémité supérieure
duquel repose une boule. L'autre extrémité est articulée a une base
que le contrdleur peut déplacer le long d’un axe horizontal. Dans les
termes abstraits donnés plus haut, le controleur mesure I'angle entre le
bras et la verticale parfaite, et il commande 1’accélération de la base. La
consigne est ’angle souhaité, c’est-a-dire 0 ici.

On va implémenter plusieurs programmes synchrones qui per-
mettent le contr6le du pendule inversé, mais aussi réaliser un modele
numérique de I'environnement, c’est-a-dire du pendule lui-méme. Pour
cela, il faut nous livrer a un petit exercice de modélisation.

L'état du systeme est décrit par le quadruplet (m,¢,0,xy) o m
désigne la masse m de la boule a I'extrémité du bras, ¢ la longueur du
bras, 0 I'angle entre le bras et la verticale, et xg la position de la base
sur l'axe horizontal. On se place dans un systéme idéalisé ot le bras et
la base sont de masses nulles. On peut dériver des lois de la mécanique
et d'un peu de trigonométrie que les états du systeme physiquement
valides satisfont I'équation différentielle

d?0 d%xg

£E —mgsinf = WCOSG

PROGRAMMATION SYNCHRONE 39

INSIN

Commande

Procédé :|
V.

Controleur

Consigne

FIGURE 16: probleme de contrdle.

X0

FIGURE 17: pendule inversé.

ol g désigne la constante gravitationnelle et ¢ est la variable du temps.
Pour simuler ce systeme dans un contexte ot1 xg est commandé par le
contrdleur, on doit calculer I'évolution de 1’angle. Il nous faut donc ré-
soudre cette équation pour trouver 6, ce qui meéne a I’équation suivante.

420 [d2x, ,
@ = <dt2C059—0—mgsm9) /B

Plutdt que de résoudre celle-ci symboliquement, on va approximer
numériquement ses solutions. Il s’agit d’un vaste sujet qui releve des
mathématiques appliquées, plus spécifiquement de 1’analyse numé-
rique. Dans notre cas, on peut simplement réutiliser l'intégrateur vu au
début du cours pour obtenir un nceud capable de simuler le systéme.

node pendulum(m, d2x0, dt : float) returns (theta : float)
var thetap, d2theta : float;
let

thetap = 0.0 fby theta;

d2theta = (d2x0 *. cos(thetap)

+. m %, g *. sin(thetap)) /. 1;

theta = itgr(0.0, dt, itgr(0.0, dt, d2theta));

tel

Le simulateur que nous allons réaliser va étre un simulateur dit 4 pas
fixe, ot a chaque instant logique va correspondre une quantité fixe de
temps physique. Cette quantité est précisément la suite constante dt
que l'on passera a au nceud ci-dessus.

Il reste maintenant a concevoir le contrdleur qui va taicher de main-
tenir le pendule inversé a 'équilibre. Il s’agit d"un probléme classique
en automatique, dont on va décrire trés brievement deux approches
tres simples : le controle dit bang-bang et le controle dit proportionnel-
intégral-dérivé, ou PID. Ces contréleurs sont génériques, au sens ot ils
s’appliquent a une foule de situations. Ces controleurs sont réglables
via divers parametres qui seront a adapter a la dite situation. Le code
fourni avec le cours vous donne une version simple de chacun d’entre
eux.

Un contrdleur bang-bang va réagir de fagon discrete a 1’erreur. Dans
le cas du pendule inversé, on peut par exemple décider de déplacer
le mobile vers la droite a une vitesse fixe lorsque l'angle 6 devient
strictement positif, et vers la gauche lorsqu’il devient négatif. Ce type
de contrdleur est tres simple mais introduit facilement des oscillations.

Un controleur proportionnel-intégral-dérivé agit en fonction de l'erreur,
typiquement définie comme la différence entre la mesure et la consigne.
Il prend en compte la magnitude courrante de cette erreur (action pro-
portionnelle), mais aussi la quantité d’erreur accumulée au cours du
temps (action intégrale), ainsi que l'intensité de variation de l’erreur (ac-

PROGRAMMATION SYNCHRONE 40

PROGRAMMATION SYNCHRONE

tion dérivée). L'influence de ces trois actions est modérée par un co-
efficient appelé gain. La valeur de chacun de ces gains dépend de
l'environnement a controler, et est fixée soit de maniere expérimentale
soit en utilisant des heuristiques comme la méthode de Ziegler-Nichols.

41

Compilation des langages synchrones a flots de données

Introduction

Le but de la derniere partie de ces notes est de vous fournir une in-
troduction a la compilation des langages synchrones a flots de données
tels que SCADE et Heptagon. Le développement de ces techniques a
connu deux grandes périodes.

Compilation en automate. Des années 1980 jusqu’a la fin des années 1990,
les compilateurs ont majoritairement reposé sur la théorie des au-
tomates. Il s’agit de construire explicitement I’automate fini qui est
décrit par un programme synchrone. Cet automate peut ensuite étre
transformé en profondeur, par exemple subir une minimisation.

Compilation guidée par les horloges. Depuis le début des années 2000, la
compilation des langages synchrones a flots de donnée s’est rappro-
chée de celle des langages plus classiques. Plutdt que de générer
un automate explicite, on traduit progressivement le code source
vers du code impératif qui implémente I'automate implicitement.
Cette traduction exploite l'information d’horloge pour optimiser la
structure de controle du code généré.

Ces deux familles d’approches partagent le méme point d’arrivée :
le compilateur synchrone produit un code source en C. Celui-ci peut
ensuite étre lui-méme transformé en exécutable par la chaine de compi-
lation standard de la plateforme cible.

Dans cette partie du cours, nous allons discuter uniquement des
techniques de compilation guidées par les horloges?". Si elles ont ten-
dance a générer du code moins performant que les méthodes a base
d’automate, elles sont capables de compiler chaque sous-programmes
indépendamment, et peuvent donc traiter des programmes de taille
arbitrairement grande. De plus, elles s’étendent naturellement a des
langages plus expressifs que Lustre. Ces raisons ont mené a 1’adop-
tion de la génération de code guidée par les horloges dans la plupart
des compilateurs actuels, dont le compilateur industriel SCADE et le
compilateur Heptagon.

Pour étudier les grandes étapes de la compilation des langages syn-
chrones, nous allons nous intéresser a un compilateur existant. Le com-
pilateur Heptagon est un choix naturel puisqu’il s’agit d'un logiciel libre
dont le code source est librement consultable et modifiable. Comme
tous les compilateurs modernes, il décompose la traduction d'un fichier
source en fichier cible (ici, du code C) en plusieurs passes de compilation.
De plus, il emploie un certain nombre de langages intermédiaires, c’est-a-
dire de langages spécialisés qui facilitent 'implémentation de certaines
analyses et transformation.

Une version simplifiée des différentes passes et langages intermé-

PROGRAMMATION SYNCHRONE 42

21. Le lecteur intéressé par la compilation
en automate pourra consulter l'article de
Halbwachs et al. [8].

((caus. analysis) «—{"init. arllalysis)
l

(automata }—(" control)

(optim)« clock {yping)

(normafization)—»(scheduling)

)| B)

FIGURE 18: flot de compilation d’heptc.

diaires du compilateur Heptagon est présentée a la figure 18. Les trois
langages connus du compilateur sont le langage source (Heptagon), un
langage intermédiaire sans structure de contrdle (MiniLS) et un langage
intermédiaire impératif (Obc). Le processus de compilation se découpe
en trois phases schématiques.

1. Le code source Heptagon est soumis a plusieurs analyses statiques
légeres qui assurent I'absence de certaines erreurs a ’exécutions (data
typing, causality analysis et initialization analysis).

2. Il est ensuite transformé de sorte a éliminer les structures de controle,
les automates au premier titre (automata, control). Le code qui en
résulte est traduit en MiniLS, un langage purement équationnel, sans
aucune construction de controle.

3. Le compilateur calcul un ordre total entre les équations qui forment
le code MiniLS. Cet ordre doit respecter les dépendances et permet
de voir chaque équation comme une instruction qui modifie I'état
courant (scheduling). Les équations peuvent ensuite étre traduites
vers du code impératif implémentant une fonction de transition.

En plus de ces étapes essentielles, le compilateur Heptagon applique
un certain nombre d’optimisations pour améliorer la taille du code
généré, sa performance ou l'espace requis (optim). Toutes ces étapes de
traduction sont appliquées a chaque noeud indépendamment.

Le reste de cette section sera consacrée a décrire chaque étape du
processus de traduction. Plutdt que de partir du langage source pour
arriver au code final, nous allons plutdt procéder en arriére : on va
d’abord expliquer la traduction de MiniLS vers du code impératif, avant
de détailler I’élimination des structures de controle d’'Heptagon, et finir
avec les analyses statiques appliquées au code source. En d’autres
termes, on va parcourir la figure 18 de bas en haut.

Plusieurs constructions et traits d’Heptagon que nous avons utilisés
dans les sections précédentes ne vont pas étre traités. Par exemple, nous
ne discuterons pas des constructions liées aux tableaux, y compris les
itérateurs. Nous ne traiterons pas non plus des parametres statiques.
Enfin, nous ne couvrirons pas les optimisations utilisées par heptc,
bien que certaines d’entre elles soient assez importantes en pratique
— notamment 1'élimination des copies de tableaux superflues.

De Minil.S a Obc

Mémoires. Le langage intermédiaire MiniLS peut étre vu comme un
fragment d’'Heptagon. Ce fragment est purement équationnel, au sens
ol on n’y trouve aucune construction de contrdle de haut niveau : pas
d’automates, de switch, de present, ou de if sur les équations. Les
variables last sont également absentes. En revanche, il dispose toujours

PROGRAMMATION SYNCHRONE 43

de when et merge, ainsi que de fby. La construction reset est toujours
présente, mais elle ne peut s’appliquer qu’a une application de fonction,
c’est-a-dire qu’elle est restreinte a la forme reset f(eq,...,e,) every x.

Comme premier exemple de l'effet du processus de compilation de
MiniLS, revenons a un de nos premiers exemples, celui du flot des
entiers naturels. Il se trouve étre écrit directement dans le fragment
d’'Heptagon qui correspond a MiniLS, c’est a dire qu’il ne contient pas
de structure de controle.

(* Code source en Heptagon/MinilS. x)
node cO() returns (nat : int)
let
nat = 0 fby (nat + 1);
tel

Les passes de compilation qui traitent les structures de contrdle (en bleu
a la figure 18) sont ici sans effet. Intéressons nous plutdt aux passes en
rouge. Le calcul d’horloges est également sans effet, puisque ce nceud
ne contient ni when, ni merge, et n"appelle aucun nceud qui contiendrait
ces constructions. La premiere passe intéressante est la normalisation.
Celle-ci fait en sorte que certaines constructions, notamment fby, soient
dans leur propre équation, en leur attribuant un nom (ici m_nat).

(¥ Code MinilS normalisé. x)
node cO() returns (nat : int)
var m_nat : int; v : int;
let

v = (nat + 1);

m_nat = 0 fby v;

nat = m_nat
tel

Une fois la normalisation effectuée, le code impératif est a portée de vue.
En effet, chaque nom défini comme le résultat d’une expression fhy
va correspondre a une variable d’état qui devra persister entre chaque
réaction, a I'inverse des autres variables, purement locales. Toutefois, il
reste a décider de l'ordre dans lequel les calculs doivent étre effectués.
C’est le role de la passe d’ordonnancement, qui produit le code suivant.

(* Code MinilLS ordonnancé. x)
node cO() returns (nat : int)
var m_nat : int; v : int;
let

nat = m_nat;

v = (nat + 1);

m_nat = 0 fby v;
tel

PROGRAMMATION SYNCHRONE 44

On voit que le code ordonnancé est une permutation du code normalisé.
Formellement, la normalisation calcule un ordre strict et total < entre
équations qui est compatible avec les dépendances. Tachons de rendre
cette définition plus précise.

On note D(E) et R(E) I'ensemble des variables définies et lues, res-
pectivement, par 'équation E. Si E; et E; sont deux équations telles
que R(E;) ND(Ey) # @, autrement dit telles que E; lit une variable dé-
finie par E,, alors E; doit avoir lieu aprés E, sauf si E; est un délai (fby
ou pre), auquel cas E; doit avoir lieu avant E;.

Le choix de placer les équations qui lisent une variable définie par
un délai, comme m_nat dans 1'exemple précédent, avant 1’équation
définissant cette variable reflete le fonctionnement du code impératif
généré. Dans I'exemple, 1'élément courant du flot m_nat va étre stocké
dans un champ dédié de la structure d’état du noeud. Le calcul de m_nat
a l'instant k va modifier en place cet état pour qu’a la fin de I'exécution,
le champ corresondant a m_nat contienne la valeur attendue pour
I'instant k + 1. Il faut donc que les équations lisant m_nat, qui doivent
lire la valeur correspondant a l'instant k, aient lu la valeur avant cette
mise a jour.

Ce fonctionnement est derriére le langage intermédiaire Obc, qui est
bien un langage impératif oti chaque noeud c0 se voit traduit en un
“objet” * modifiable appelé machine.

-- Code impératif dans le langage Obc.
machine c0 =
var m_nat: int;

reset() returns () {
mem(m_nat) = 0

step() returns (nat: int) {
var v: int;
nat = mem(m_nat);
v = ((+) nat 1);
mem(m_nat) = v

}

Un programme Obc est donc constitué par un ensemble de machines.
Chaque machine spécifie un ensemble de mémoires, une méthode step
et une méthode reset. Les mémoires correspondent aux équations
MiniLS qui définissaient des délais. Le corps de la méthode reset
réinitialise les variables d’instances, en y écrivant les valeurs initiales
des délais. Le corps de la méthode step calcule les sorties en fonction
des entrées (c0 n’en a pas) et de la valeur courante des mémoires, et met

PROGRAMMATION SYNCHRONE 45

22. Si la terminologie vient de la program-
mation orientée objet, celle-ci reste techni-
quement assez lointaine : pas d’héritage
ou de liaison tardive ici.

a jour celles-ci. Ce corps est formé d’une séquence d’instructions qui
correspondent directement aux équations du code MiniLS ordonnancé.

Obc étant un langage impératif trés simple, il peut facilement étre
traduit vers toutes sortes de langages : C, Javascript, OCaml, Ada,
etc. Le compilateur Heptagon effectue encore quelques optimisations
sur Obc. Une fois ceci-fait, il ne reste essentiellement qu’a afficher les
constructions d’Obc dans la syntaxe du langage cible. A titre d’exemple,
le code C ci-dessous est le produit final de la compilation. Les mémoires
de la machine ont été placées dans une structure dédiée, tout comme
ses sorties.

/* Code C final. x/

typedef struct cO_mem {
int m_nat;

} cO_mem;

typedef struct cO_out {
int nat;
} cO_out;

void cO_reset(cO_mem xself) {
self->m_nat = 0;

void cO_step(cO_out *_out, cO_mem *self) {
int v;
_out->nat = self->m_nat;
v = (_out->nat+1);
self->m_nat = v;;

}

On peut ensuite produire du code exécutable avec n'importe quel com-
pilateur C, et lancer le programme en appelant la fonction c0_step()
de fagon répétée, par exemple a intervalle de temps physique fixe.

Instances. On a vu que tout usage d’un délai donnait lieu a l'usage
d’une mémoire dans le code final. Lorsquun noeud f applique un
neeud g, il faut donc qu'une nouvelle copie des mémoires de g soit
créée. Considérons le code ci-dessous.

(+ Code source en Heptagon/MinilS. x*)
node cl() returns (o : int)
let
0 =cO() + co() + (0 fby 0);
tel

PROGRAMMATION SYNCHRONE 46

Une fois ce code MiniLS normalisé et ordonnancé, il est traduit par le
compilateur Heptagon vers la machine Obc suivante.

machine cl =
var v_3: int;
obj cO_1 : cO; cO : co;

reset() returns () {
cO_1.reset();
cO.reset();
mem(v_3) =0

step() returns (o: int) {
var v_2: int; v_1: int; v: int;

(v_1) = cO_1.step();
(v) = cO.step();
v_2 = ((+) v v_1);

0= ((+) v_2 mem(v_3));
mem(v_3) = 0

}

En plus de la mémoire v_3, la machine c1 contient deux instances,
c’est-a-dire des sous-machines nommeées. Chacune des deux instances
correspond a un appel a c0 depuis c1, et stocke les mémoires correspon-
dantes. Observons que la méthode reset de la machine c1 réinitialise
récursivement ces deux instances, pour que leurs mémoires soient éga-
lement réinitialisées. La méthode step fait appel aux méthodes step
des instances pour calculer leurs sorties respectives.

Réinitialisation. La mémoire du code généré par Heptagon est donc
arborescente : chaque nceud donne lieu a une machine dont la mémoire
contient une copie de la mémoire de chacune de ses sous-machines,
et ainsi de suite. Puisque chaque sous-machine correspondant a un
appel de nceud dans le code source, éviter ces appels peut parfois
étre judicieux. Par exemple dans le cas du noeud cl précédent, une
seule copie de c0 aurait suffit, et on aurait pu multiplier sa sortie par
deux. Dans beaucoup de cas, on ne peut toutefois pas éviter d’appeler
le méme nceud plusieurs fois. Considérons par exemple le nceud c2
suivant.

(* Code source en Heptagon/MinilS. =)

node c2() returns (o : int)
var h bool; a, b : int;
let

h = true fby not h;

PROGRAMMATION SYNCHRONE 47

a = co();
reset b = cO() every h;
o=a+ b;

tel

Il est compilé vers la machine Obc ci-dessous.

machine c2 =
var h: bool;
obj cO_1 : cO; cO : cO;

reset() returns () {
cO_1.reset();
cO.reset();
mem(h) = true

step() returns (o: int) {
var v: bool; a: int; b: int;
switch (mem(h)) {
case true:
cO_1.reset()

};

(b) = cO_1.step();
(a) = cO.step();
o= ((+) ab);

v = not(mem(h));
mem(h) = v

}

La construction reset/every a été traduite vers un appel a la mé-
thode reset de l'instance c0_1 lorsque la mémoire h contient le booléen
vrai a la réaction courante. On voit ici que les deux instances ne peuvent
pas étre fusionnées, puisqu’elles transportent des valeurs distinctes.

Controle et horloges. Seules deux constructions de MiniLS peuvent
induire la présence de conditionnelles dans le code généré;

1. la réinitialisation (cf. exemple précédent),
2. les horloges.
Pour voir comment les horloges interagissent avec le processus de

génération de code, considérons 'exemple suivant.

(* Code source en Heptagon/MinilS. x*)
node c3(c : bool) returns (o : int)
var a, b : int;

PROGRAMMATION SYNCHRONE 48

PROGRAMMATION SYNCHRONE 49

let
=c0 ();
b =1¢c0 ();
0 = merge ¢ a (b whenot c);
tel

Question 24. Donnez un chronogramme montrant les valeurs des variables a, b
et o pour c valant true :: false :: false :: true :: ... Déduisez-en les horloges de
ces trois variables.

En écrivant un chronogramme, on réalise que b et o sont sur I'horloge
de base “.”, tandis que a est sur I'’horloge ”. on c”. Ces horloges
dictent les réactions auxquelles les instances des machines utilisées

pour calculer b et ¢ doivent étre activées dans la méthode step de ¢3.

machine c2 =
obj cO_1 : cO;cO : cO;

reset() returns () {
cO_1.reset();
cO.reset()

step(c: bool) returns (o: int) {
var a: int; b: int;
(b) = cO_1.step();
switch (c) {
case true:
(a) = cO.step();
0 =a
case false:
o=>b

}

Question 25. Que se passe-t-il si 'appel a4 cO_1.step() est déplacé dans la
deuxiéme branche de la conditionnelle ?

Récapitulatif La traduction de MiniLS vers du code impératif obéit
donc aux principes suivants.

1. Un nceud est traduit vers une machine, qui réunit un ensemble de
mémoires, d’instances et de méthodes.
— Chaque délai donne lieu a une mémoire,
— chaque appel de nceud donne lieu a une instance.

2. Les équations MiniLS sont traduites vers des instructions qui consti-
tuent le corps de la méthode step de la machine.

— Elles doivent étre ordonnées pour respecter les dépendances. ..

— et permettre de mettre a jour en place les mémoires.

3. La réinitialisation est implémentée en appelant la méthode reset de
lI'instance correspondante.

4. Les horloges déterminent a quelles réactions chaque instruction doit
étre calculée. Elles sont traduites vers des conditions booléennes qui
gardent I'exécution des instructions.

De Heptagon a MiniLS

Le compilateur traduit progressivement les structures de controle de
haut niveau en équations simples. Ce processus est structuré en deux
grandes étapes : d’abord I'élimination des automates, puis 1’élimination
des autres structures de controle. Le code résultat est finalement traduit
en MiniLS. Cette sous-section détaille ces traductions par 'exemple,
sans donner leur forme générale, qui peut étre trouvée dans les articles
scientifiques idoines.
Elimination des automates. Pour comprendre comment le compilateur
Heptagon va éliminer les automates hiérarchiques, on va observer son
action en commengcant par du code tres simple.

node f(x : bool) returns (o : int)
let
automaton
state A
do o =0 fby (0o + 1)

unless x continue B

state B
do o =1 fby (2 * o)
until x continue A
end

tel

Apres élimination des automates, on obtient le code suivant.

type st = St_ A | St.B
node f(x : bool) returns (o : int)
var s, ns st; r, nr, pnr bool;
let
switch (St_A fby ns)
| St_A

do reset (s, r) =
if x then (St_B, false) else (St_A, pnr)

PROGRAMMATION SYNCHRONE 50

La conception générale des automates
ainsi que le schéma général de leur tra-
duction telle quimplémentée dans le
compilateur Heptagon est présenté par
les articles suivants de Colagco, Hamon,
Pagano et Pouzet.

J.-L. Colago, B. Pagano, and M. Pou-
zet. A Conservative Extension of Syn-
chronous Data-flow with State Machines.
In ACM International Conference on Em-
bedded Software (EMSOFT’05), Jersey city,
New Jersey, USA, September 2005; and
J.-L. Colag¢o, G. Hamon, and M. Pouzet.
Mixing Signals and Modes in Synchro-
nous Data-flow Systems. In ACM Inter-
national Conference on Embedded Software
(EMSOFT’06), Seoul, South Korea, Octo-
ber 2006

every pnr
| St_B
do reset (s, r) = (St_B, pnr)
every pnr
end;
switch (s)
| St_A
do reset (ns, nr) = (St_A, false);
o=0 fby (0o + 1)
every r
| St_B
do reset (ns, nr) = if x then (St_A, false)
else (St_B, false);
o =1 fby (2 * 0)
every r
end;

pnr = false fby nr
tel

Le nceud obtenu est le fruit d’une transformation générale et systéma-
tique réduisant les automates hiérarchiques a la construction switch.
Pour cette raison, il contient une certaine quantité de redondance.

Question 26. Comment évoluent les flots r, nr et pnr au cours du temps ?

Un peu de réflexion permet de se convaincre que ces trois flots valent
constamment false. On peut donc simplifier manuellement le code
pour obtenir un équivalent plus facile a lire.

node f(x : bool) returns (o : int)
var s : st; ns : st;
let
switch St_A fby ns
| St_A do s = if x then St_B else St_A

| St.Bdos = St.B

end;

switch s
| St_A do ns = St_A; o =0 fby (o + 1)
| St.B do ns = if x then St_A else St_B;

o =1 fby (2 * o)
end;
tel

Comment lier ce code au code a I'automate de départ ? Tout d’abord, on
peut constater que le compilateur a défini un nouveau type st dont les
valeurs sont les états potentiels de I’automate, ici nommés St_A et St_B.
Ensuite, que la passe d’élimination des automates a également introduit

PROGRAMMATION SYNCHRONE 51

deux nouvelles variables locales de type st, a savoir s et ns. Le flot s
transporte 1’état courant de I’automate, tandis que ns transporte 1'état
qui sera le sien au prochain instant — sauf si une transition unless
se produit. La présence de deux utilisations du mot-clef switch refléte
cette distinction entre état courant et prochain état.

— Le premier bloc switch calcule 1’état courant en fonction de la va-
leur précédente de ns et de I’entrée x. Au premier instant, tout se
passe comme si 'automate avait été démarré dans 'état initial A.
Sil'on a déterminé a l'instant précédent que le nouvel état devrait
étre St_B, alors 1’état courant est toujours St_B, reflétant I’absence
de transition forte dans 1’état B. En revanche, si 'on a déterminé
a l'instant précédent que le nouvel état devrait étre St_A, 'équa-
tions = if x then St_B else St_A fixe I'état courant en fonction
de x. Ce comportement refléte la présence d’une transition forte sur x
dans 1’état A.

— Le second bloc switch calcule le prochain état prévu ainsi que
la valeur de la sortie o en fonction de l'état courant. Le calcul
du prochain état reflete la présence ou l’absence de transitions
faibles a l'état courant. Ainsi, aucune transition faible n’est pré-
sente a l'état A, ce qui est reflété par I'’équation ns = St_A. A l'in-
verse, 'équation ns = if x then St_A else St_B traduit la transi-
tion until x then A dans 1’état B.

La traduction générale des automates suit le schéma que nous venons
d’illustrer sur un exemple. Le point le plus important est 1'utilisation
de deux flots distincts pour représenter l'état courant de 1’automate, et
I'état de I'automate a l'instant suivant en 'absence de transition forte.

Notre exemple précédent ne disposait que de transitions conti-
nuantes. Pour comprendre la traduction des transitions réinitialisantes,
on peut observer le résultat de la traduction une fois le mot-clef continue
remplacé par then. On obtient alors le code ci-dessous.

type st = St_ A | St_B
node f(x : bool) returns (o : int)
var s, ns : st; r, nr, pnr : bool;
let
switch St_A fby ns
| St_A do reset (s, r) = if x then (St_B, true)
else (St_A, pnr)

every pnr
| St_B
do reset (s, r) = (St_B, pnr) every pnr
end;
switch s

| St_A

PROGRAMMATION SYNCHRONE 52

do reset (ns, nr)

(St_A, false);

o=0 fby (0o + 1)
every r
| St_B
reset
(ns, nr) = if x then (St_A, true) else (St_B, false);
o=1fhy 2 x o
every r

end;
pnr = false fby nr
tel

Cette fois-ci, les flots r, nr et pnr jouent un rdle non trivial. Le flot r est
vrai lorsqu’il faut réinitialiser 1'état courant de 1’automate. Le flot nr
est vrai lorsqu’il faudra réinitialiser I'état de l'automate a l'instant
suivant. Le flot pnr est vrai lorsqu’on a décidé a l'instant précédent
qu’il faudrait réinitialiser I'état de 1’automate pour l'instant courant,
sauf si une transition forte est prise. En particulier, le flot r controle la
réinitialisation (via le mot-clef reset) des équations présentes dans le
corps d’un état de 'automate.

Enfin, remarquons que le code généré reflete une spécificité de
la sémantique des automates d’Heptagon. Il s’agit de la possibilité,
expliquée dans la premiere partie de ces notes, pour un état d’étre
franchi instantanément. Cette situation ne se produit que lorsque qu’on
y est entré via une transition faible a la fin de I'instant précédent pour
en sortir immédiatement au début de l'instant courant. Toutefois, si
la transition faible est réinitialisante, 1’état intermédiaire doit tout de
méme étre réinitialisé !

Elimination du controle. Le code produit apres élimination des auto-
mates contient toujours des constructions de contrdle qui permettent
d’activer des blocs d’équations sporadiquement, et autorisent la défi-
nition d’une variable dans plusieurs blocs. On va se focaliser sur la
construction switch, le traitement de if et de present étant similaire.

Revenons au code obtenu apres élimination du tout premier auto-
mate. En continuant le processus de compilation, on obtient le résultat
ci-dessous.

node f(x : bool) returns (o : int)
var s, ns : st; s_St_A, s_St_B, ck : st;
ns_St_A, ns_St_B, ck_1 : st; o_St_A, o_St_B : int;
let
(¥ Traduction du premier switch. *)
s = merge ck (St_B -> s_St_B)(St_A -> s_St_A);
(* Premiére branche du premier switch. x)

PROGRAMMATION SYNCHRONE 53

s_St_B = St_B;

(* Seconde branche du premier switch. x*)

s_St_A = if (x when St_A(ck)) then St_B else St_A
ck = St_A fby ns;
(* Traduction du second switch. x)

merge ck_1 (St_B -> ns_St_B)(St_A -> ns_St_A);
merge ck_1 (St_B -> o_St_B)(St_A -> o_St_A);
(x Premiére branche du second switch. x)
ns_St_B = if (x when St_B(ck_1)) then St_A else St_B;
0_.St. B =1 fby (2 * (0o when St_B(ck_1)));

*)

ns =
0 =

(* Seconde branche du second switch.
ns_St_A = St_A;
0_St_A =0 fby ((o when St_A(ck_1)) + 1);
ck.1 =5
tel

La traduction réalisée est plus simple que celle qui élimine les auto-
mates. Elle s’appuie sur les opérateurs de sélection et de fusion, ainsi
que sur la notion d’horloge. La condition qui détermine la branche
active de chaque switch donne lieu a une nouvelle variable d’horloge,
ici ck pour le premier switch et ckl pour le second. L’essentiel de
la traduction consiste a distinguer soigneusement les définitions et
usages d’une variable s déclarée a I'extérieur du switch — les variables
déclarées localement peuvent étre traduites telles quelles. Ainsi, les
deux définitions de la variable s donnent lieu a deux variables dis-
tinctes s_St_A et s_St_B, qui sont fusionnées selon ck. Ces variables
étant d’horloges lentes, elles doivent appliquer 1'opérateur de sélection
aux variables définies a I’extérieur du switch, par exemple x dans la
définition de s_St_A.

Elimination de la réinitialisation par bloc. La construction de réinitialisa-
tion de MiniLS ne s’applique qu’aux appels de fonctions. Il faut donc
ramener la construction générale reset bloc every c d’Heptagon a ce
cas particulier. Ce processus consiste essentiellement a introduire des
conditionnelles autour des mémoires (fby, pre et ->). Pour l'illustrer,
considérons les deux compteurs d’événements ci-dessous.

node countreset(e, rst : bool) returns (o : int)
var c : int;
let
c = if e then 1 else 0;
reset o = (0 fby 0) + c every rst;
tel
node countreset2(e, rst : bool) returns (o : int)

PROGRAMMATION SYNCHRONE 5’4

let
reset o = sum(if e then 1 else 0) every rst;
tel

Le second compteur est une variante du premier oit l’on a isolé le fhy
dans son propre nceud sum. Le compilateur produit par le compilateur
apres élimination de la construction reset est le suivant.

node countreset(e : bool; rst : bool) returns (o : int)
var c : int;
let
c = if e then 1 else 0;
(if rst then 0 else 0 fby o + c)

0
tel

node countreset2(e : bool; rst : bool) returns (o : int)
let

0 = sum(if e then 1 else 0) every rst
tel

Dans le premier cas, la construction de réinitialisation a été totalement
éliminée via l'introduction d'une conditionnelle qui teste explicitement
le flot contrélant la réinitialisation autour du fby. Dans le second cas,
cette approche n’est pas possible puisque le nceud sum est traité comme
une boite noire. On repose donc sur la présence de la construction every
en MinilLS, variante de la réinitialisation qui ne s’applique qu’aux
appels de noceuds. Comme on l'a expliqué dans ce qui précede, cette
construction sera ultimement implémentée par un appel a une fonction
de réinitialisation dédiée dans le code C final.

Elimination des mémoires partagées. Enfin, MiniLS ne dispose pas de
mémorie partagées (variables last), il faut donc éliminer celles-ci. Pour
comprendre la traduction, considérons un exemple trés simple de
programme utilisant last.

node f(x : int) returns (last o : int = 0)
let

o = X + last o;
tel

Le code MiniLS obtenu est le suivant.

node f(x : int) returns (o : int)
var o_1 : int;
let
0.1 =0 fby o;
o= (x + o_1)
tel

PROGRAMMATION SYNCHRONE 55

La traduction consiste simplement a introduire une nouvelle variable
qui représente la valeur précédente de o, ici o_1. Cette variable est le
résultat d'un opérateur fby initialisé avec la valeur spécifiée lors de la
déclaration de o comme mémoire. En I'absence de valeur d’initialisation
déclarée, la définition de o_1 utilisera plutdt I'opérateur pre.

L'élimination des last est réalisée en plusieurs étapes. Une partie est
effectuée lors de 1’élimination des automates. L'autre lors d'une passe
idoine réalisée juste avant la production de code MiniLS, et qui n’a
donc pas a se soucier des structures de contrdle.

Types, initialisation, causalité, horloges

Les programmes Heptagon sont soumis a une batterie d’analyses qui
visent a interdir toute une classe d’erreurs. Ces analyses sont statiques :
elles n’ont pas besoin d’exécuter le programme, et donc de disposer
des données d’entrées. En contrepartie, elles sont imprécises, en ce
qu’elles vont avoir tendance a rejeter des programmes corrects. Ce
compromis familier est au cceur de la famille d’analyses statiques la
plus populaire : les systemes de types. Par exemple, une expression C
comme (x & false ? NULL : 42.f) s’évalue toujours vers le nombre
a virgule flottante 42. f mais est rejetée comme incorrecte.

Dans le cas d’'Heptagon, les analyses statiques sont au nombre de
quatre : typage de données, analyse d’initialisation, analyse de causalité,
calcul d’horloge. Le typage de données, ’analyse d’initialisation et le
calcul d’horloge sont des systéemes de types. Les systemes de types,
en regle général, ont I’avantage d’étre modulaires : ils permettent de
traiter un nceud f comme une boite noire, a partir du moment ot
le type de f est connu. Les quatre analyses sont appliquées au code
source Heptagon, a 'exception du calcul d’horloge qui est appliqué sur
MiniLS, et donc apres Iélimination des structures de controle de haut
niveau. On décrit brievement chacune d’entre elles.

Types de données. Le systéeme de types de données n’a rien de re-
marquable, et se rapproche de celui d'un langage comme Pascal. La
grammaire qui décrit un type de données 7; est

Tye=s| T X X7 | Tn

oll s est un nom de type défini, qu’il s’agisse d'un type de base prédé-
claré comme int ou float, ou d’un type énuméré ou enregistrement
défini par l'utilisateur. L’absence de type fonctionnel trahit le fait qu'un
neeud Heptagon ne peut ni renvoyer ni recevoir en parametre un autre
neceud : le langage est de premier ordre. Les types sont vérifiés a partir
des déclarations de variables, et non inférés comme dans un langage
comme OCaml.

PROGRAMMATION SYNCHRONE 56

Initialisation. L'analyse d’initialisation vise a assurer que la valeur nil
produite par chaque utilisation de 1’opérateur pre au premier instant
n’ait pas d’impact sur le comportement final du programme. Elle est
implémentée comme un systéme de types. La grammaire qui décrit un
type d’initialisation T; est

6u=0]|1|5x---x3.

ol les deux seuls types de base 0, qui classifie les valeurs toujours
initialisées, et 1, qui classifie les valeurs potentiellement non-initialisées. Ces
deux types sont liés par une relation de sous-typage qui spécifie 0 < 1.
Celle-ci reflete qu’il n’est pas incorrect d’oublier qu'une valeur est
initialisée pour prétendre qu’elle ne l'est potentiellement pas. Elle
permet d’utiliser une expression initialisée partout ott une expression
potentiellement non-initialisée peut convenir.

Comme tout systeme de types, 'analyse d’initialisation spécifie pour
chaque opération du langage une regle de déduction qui permet de
déduire du type des arguments le type du résultat. Les regles les plus
intéressantes sont les suivantes.

CoNSsT Or PRrRE INTT
el: e2: 9 e:0 el: o e2:1
c:0 op(el, e2) : max(d1,d) pre e:1 el ->e2:0
LasTVAL LasTtNoVaL FBY
last x : ... =V last x : ... =V el: o e2:0
last x:0 last x:1 el fby e2:¢

Les constantes sont toujours initialisées. Le résultat d'un opérateur
comme l’addition est potentiellement non initialisé des que I'un de ses
arguments l'est. Le résultat d’un pre n’est par définition pas initialisé,
mais son argument doit 1’étre, ce qui interdit notamment d’écrire une
expression de la forme pre (pre e). Le résultat de el -> e2 est aussi
initialisé que l’est el. Enfin, une variable last est initialisée si sa décla-
ration fourni une valeur d’initialisation. Enfin, le résultat de el fby e2
est aussi initialisé que l'est el.

Causalité. L'analyse de causalité actuellement implémentée dans Hep-
tagon ne prend pas la forme d’un systéme de types, mais d’une analyse
a base de contraintes tres simples. Elle est toutefois peu modulaire, puis-
qu’elle suppose que tous les résultats d"un appel de nceud dépendent
de tous les arguments.

Une contrainte de causalité peut étre vue comme une formule logique
qui décrit un ordre entre les équations du nceud dont on cherche a
vérifier la causalité. La grammaire qui décrit les contraintes C est

Cuz=write(x) | read(x) | T|CAC|C<C](C,...,C)

PROGRAMMATION SYNCHRONE 57

On présente les regles de déduction dans
un style informel mais intuitif. Le lecteur
intéressé pourra se référer a l'article de
Jean-Louis Colaco et Marc Pouzet [6], qui
sert de base a I'implémentation réalisée
dans le compilateur Heptagon.

ol x dénote une variable du nceud en considération. Chaque nceud
se voit associer une contrainte par 1’analyse de causalité, et est dit cau-
sal si cette contrainte est résoluble. Intuitivement, une contrainte est
résoluble si on peut construire une fonction ¢ qui associe a chaque
contrainte C un entier n d’'une fagon “compatible” avec C. Par exemple,
si read(x) et write(x) apparaissent tous deux dans C, alors on doit
avoir o(write(x)) < o(read(x)), indiquant qu'une variable doit étre
écrite avant d’étre lue. Pour vérifier qu’il existe un tel o, Heptagon
traduit la contrainte vers un graphe fini dont 'acyclicité équivaut a
I'existence d’une solution. Tout tri topologique du graphe construit une
solution de la contrainte initiale.

Calcul d’horloge. Le calcul d’horloge est un systéeme de types dont nous
avons vu les grandes lignes lors de l'introduction des opérateurs de
sélection et fusion (voir la premiere partie des notes). Il est implémenté
apres I’élimination des structures de controle, dont les automates. C’est
un défaut de la conception actuelle du compilateur, dans la mesure ot
un message d’erreur risque d’exposer l'utilisateur au code intermédiaire
produit apres 1’élimination des structures de controle.

PROGRAMMATION SYNCHRONE 58

La syntaxe réelle utilisée par Heptagon
inclut la disjonction de contrainte C Vv C.
Elle est traitée séparément des autres par
une mise en forme normale disjonctive
initiale. On néglige ce cas pour ne pas
alourdir la présentation.

Références

[1]

[2]

(3]

[4]

[5]

(6]

[7]

(8]

[11]

A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guer-
nic, and R. de Simone. The Synchronous Languages 12 Years Later.
Proceedings of the IEEE, 2003.

F. Bonchi and D. Pous. Checking NFA equivalence with bisimu-
lations up to congruence. In Principles of Programming Languages
(POPL’13). Association for Computing Machinery, 2013.

P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE : A
declarative language for programming synchronous systems. In
Principles of Programming Languages (POPL’87). Association for
Computing Machinery, 1987.

J.-L. Colago, G. Hamon, and M. Pouzet. Mixing Signals and
Modes in Synchronous Data-flow Systems. In ACM International
Conference on Embedded Software (EMSOFT 06), Seoul, South Korea,
October 2006.

J.-L. Colago, B. Pagano, and M. Pouzet. A Conservative Extension
of Synchronous Data-flow with State Machines. In ACM Internatio-
nal Conference on Embedded Software (EMSOFT 05), Jersey city, New
Jersey, USA, September 2005.

J.-L. Colaco and M. Pouzet. Type-based Initialization Analysis of
a Synchronous Data-flow Language. In Synchronous Languages,
Applications, and Programming, volume 65. Electronic Notes in Theo-
retical Computer Science, 2002.

L. Gérard, A. Guatto, C. Pasteur, and M. Pouzet. A Modular
Memory Optimization for Synchronous Data-flow Languages :
Application to Arrays in a Lustre Compiler. In Languages, Com-
pilers, Tools and Theory for Embedded Systems (LCTES’'12). ACM,
2012.

N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code
from data-flow programs. In Programming Language Implementation
and Logic Programming, Passau (Germany), August 1991.

G. Kahn. The semantics of a simple language for parallel program-
ming. In Information Processing Congress (IFIP"74). IFIP, 1974.

P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Pro-
gramming real-time applications with SIGNAL. Proceedings of the

IEEE, 79(9) :1321-1336, 1991.

Z.Manna and A. Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems. Springer New York, 1992.

PROGRAMMATION SYNCHRONE 5’9

PROGRAMMATION SYNCHRONE 60

[12] K.]. Astrém and R. M. Murray. Feedback Systems : An Introduction
for Scientists and Engineers. Princeton University Press, Jan 2008.

	Introduction
	La programmation synchrone à flots de données
	Applications
	Compilation des langages synchrones à flots de données

