
Programmation synchrone
Adrien Guatto

2020–2024

Ces notes de cours proposent une introduction à la programmation des
systèmes réactifs par le biais des langages de programmation dits syn-
chrone. Elles correspondent à un enseignement délivré durant les années
universitaires 2020–2024 à l’Université de Paris, en Master 2 Informatique
ainsi qu’à l’École d’Ingénieur Denis Diderot. Version du 29 août 2025. Je suis preneur

de toute coquille, erreur ou remarque par
courriel à l’adresse adrien@guatto.org.

Ne pas redistribuer.
Table des matières

Introduction 2

Programmes et systèmes réactifs 2

Langages synchrones 4

Le reste du cours 5

La programmation synchrone à flots de données 6

Premiers programmes 8

Programmation flots de données et causalité 10

Horloges 18

Automates 24

Tableaux et itérateurs 32

Applications 39

Programmation audio en temps-réel 39

Contrôle d’un pendule inversé 39

Compilation des langages synchrones à flots de données 42

Introduction 42

De MiniLS à Obc 43

De Heptagon à MiniLS 50

Types, initialisation, causalité, horloges 56

mailto:adrien@guatto.org

programmation synchrone 2

Introduction

L’apprentissage de la programmation se structure traditionnellement
le long de deux axes :

1. la pratique de la programmation dans des langages variés, par
exemple Java, C ou OCaml ;

2. l’étude de concepts et techniques algorithmiques indépendants du
langage de programmation, par exemple l’algorithmique des tris, ou
encore celle des graphes.

Le but du présent cours est de prolonger ces deux axes dans une direc-
tion qui devrait être nouvelle pour vous : celle des programmes réactifs,
par opposition aux programmes transformationnels 1. 1. La distinction entre ces deux classes de

programmes est traditionnellement attri-
buée à Zohar Manna et Amir Pnueli [11].

Programmes et systèmes réactifs

Un programme transformationnel lit une entrée, la traite, puis pro-
duit un résultat complet en temps fini. L’utilitaire sort d’UNIX, qui trie
une liste de lignes par ordre alphabétique, constitue un exemple très
simple de programme transformationnel. Un exemple plus sophistiqué
est fourni par n’importe quel compilateur capable de traduire un fichier
source en un fichier en langage cible 2 réutilisable 3. La plupart des 2. Par exemple, le langage machine com-

pris par votre processeur pour gcc, ou le
code-octet de la machine virtuelle Java
pour javac.

3. Le cas des compilateurs à la volée (just-
in-time), qu’on trouve notamment dans
les navigateurs web, est plus complexe et
ne rentre pas facilement dans la dichoto-
mie transformationnel vs. réactif.

programmes que vous avez écrits jusqu’ici sont transformationnels.
Par opposition, un programme réactif est en interaction continuelle

avec un environnement extérieur qu’il va chercher à contrôler, sur-
veiller ou réguler. Cet environnement extérieur est généralement un
environnement physique, que notre programme observe par le biais de
capteurs et influence par le biais d’actuateurs — voir figure 1. Pensez
au pilote automatique d’un avion (fly-by-wire en anglais), au firmware
du modem 4G de votre téléphone, ou plus modestement au contrôleur
de votre four à micro-ondes.

Question 1. Pouvez-vous citer d’autres exemples de programmes transfor-
mationnels ? De programmes réactifs ? De programmes qui ne semblent pas
appartenir nettement à un des deux cotés de cette classification ?

Env. physique

Programme réactif

A
ct

ua
te

ur
s C

apteurs

Figure 1: système réactif générique.

Un programme réactif ne peut généralement pas être considéré en
isolation de son environnement extérieur. Par exemple, le pilote au-
tomatique d’un avion fait des hypothèses sur l’environnement aérien
(altitude, force du vent, etc.) ainsi que sur l’avion lui même (poids, por-
tance, etc.). Pour cette raison, on parlera généralement de système réactif
pour englober sous un même terme le logiciel et son environnement,
en insistant sur leur interdépendance 4. 4. On verra ultérieurement que cette inter-

dépendance se traduit de façon concrète
par la pratique qui consiste à développer
simultanément le programme réactif et
un modèle logiciel de son environnement
physique, afin de simuler leur interaction.

En plus de cette définition générale, beaucoup de systèmes réactifs
partagent un petit nombre de caractéristiques essentielles, que nous
allons maintenant aborder.

programmation synchrone 3

Figure 2: vol 501 d’Ariane 5.

Criticité. Certains programmes réactifs contrôlent des dispositifs phy-
siques où l’erreur peut avoir des conséquences catastrophiques sur la
vie humaine, ou bien un coût financier démesuré. Citons deux erreurs
restées tristement célèbres.

— Le 4 juin 1996, le premier vol d’Ariane 5 aboutit à la destruction du
lanceur 37 secondes après son décollage (figure 2). Une partie du
logiciel avait été reprise d’Ariane 4 sans être mise à jour pour tenir
compte de l’évolution des caractéristiques physiques du lanceur 5 . 5. On peut approfondir sur les causes logi-

cielles de cet échec et leurs conséquences
matérielles en lisant le rapport de la com-
mission d’enquête. Une copie est dispo-
nible en ligne.

— Entre 1985 et 1987, les machines de radiothérapie Therac-25 (fi-
gure 3) ont causé six irradiations massives, dont trois mortelles. Le
tout a été causé par la combinaison d’une pratique défaillante du gé-
nie logiciel (manque de test), de l’absence de protections physiques
(jugées redondantes), et de la présence de bogues de programmation
concurrente de type “condition de course” (race condition).

Ces systèmes réactifs, où l’erreur est inadmissible, sont dits critiques.
Leur conception et réalisation doit assurer un haut niveau de sûreté, et
exige donc l’emploi d’une méthodologie adaptée.

Figure 3: machine Therac-25.

Question 2. Pouvez-vous citer un exemple de système critique dans le secteur
des transport ? Dans le secteur bio-médical ? Dans le secteur militaire ?

Contraintes temporelles. Les programmes réactifs sont souvent soumis
à des contraintes dites de temps-réel — c’est presque toujours le cas s’ils
appartiennent à un système critique. Un programme temps-réel doit
absolument réagir en un temps borné maximal à certains changements
de l’environnement. Manquer cette échéance peut entraîner un échec
catastrophique de tout le système. Par exemple, le système TCAS II,
employé dans l’aviation civile, est chargé d’avertir un pilote en cas de
présence d’un appareil intrus dans une de ses trois zones d’intérêt (cf. fi-
gure 4). Le pilote doit être averti très rapidement pour lui laisser le
temps de réagir avant qu’une collision ait pu se produire.

Figure 4: Zones d’intérêt du système
d’évitement de collision TCAS II.

Un des facteurs principaux qui impose des contraintes temps-réel aux
programmes réactifs est leur interaction avec l’environnement physique.
L’évolution de celui-ci est régie par des lois mathématiques qui évoluent
en temps continu. À l’inverse, l’exécution du programme réactif prend la
forme d’une séquence de transitions discrètes, autrement dit, en temps
discret. Dès lors, il faut s’interroger sur la capacité du programme
réactif à se faire une idée juste du système physique. Il s’agit d’un
problème d’échantillonage : le programme réactif doit observer le système
physique à la bonne fréquence, ni trop lente, ni trop rapide. Autrement
dit, la fréquence de réaction du programme fait partie intégrante de
l’algorithme employé 6. 6. La littérature sur les systèmes temps-

réel distingue souvent la correction fonc-
tionnelle des contraintes temps-réel, et pro-
pose de les considérer indépendamment.
La présente discussion montre que cette
distinction n’est pas toujours pertinente.

http://deschamp.free.fr/exinria/divers/ariane_501.html
https://mediawiki.ivao.aero/index.php?title=Traffic_collision_avoidance_system_-_TCAS

programmation synchrone 4

Mathématiques dédiées. Le paragraphe précédent illustre l’importance
des mathématiques appliquées dans la conception d’un programme
réactif en interaction avec un environnement. En général, cet environ-
nement évolue au cours du temps selon ses propre lois — on parle
alors de système dynamique. La sous-discipline des mathématique appli-
quées qui se consacre au contrôle des systèmes dynamiques s’appelle
l’automatique (control theory en anglais). Ce contrôle peut passer par
des dispositifs numériques, mais aussi purement électriques ou méca-
niques 7. Les théorèmes d’automatique fournissent par exemple des 7. Un exemple célèbre de dispositif de

contrôle mécanique est le régulateur à
boules de James Watt.

Il permet de maintenir une machine à
vapeur à une vitesse quasiment constante
en contrôlant l’arrivée de vapeur. Celle-ci
diminue si la machine est trop rapide, et
augmente si elle est trop lente.

garanties sur la correction de l’échantillonage, comme nous en avons
discuté ci-dessus, mais aussi des outils d’analyse du comportement des
systèmes dynamiques.

Le présent cours n’est pas un cours de mathématiques, aussi nous
ne traiterons pas d’automatique à proprement parler. Toutefois, nous
ferons référence à certains de ses résultats à plusieurs reprises, et nous
montrerons comment certains concepts issus de l’automatique sont
utiles pour la programmation de systèmes réactifs, sans détailler leurs
sous-bassements théoriques 8.

8. Si vous souhaitez découvrir ceux-ci, le
livre d’Åström et Murray [12] offre une
introduction à l’automatique illustrée de
nombreux exemples. La deuxième édi-
tion est disponible en ligne.

Contraintes de ressources. Enfin, les programmes réactifs se retrouvent
en général exécutés par du matériel informatique dont c’est la seule
fonction. On parle typiquement de système embarqué. De tels systèmes
sont généralement soumis à des impératifs de coûts forts, surtout
lorsqu’ils doivent être produits à de nombreux exemplaires dans une
perspective commerciale (pensons, par exemple, aux microcontrôleurs
qu’on trouve dans les fours à micro-ondes actuels). Ces impératifs
de coût exigent généralement des programmes réactifs qu’ils soient
économes en temps, en espace, en énergie.

La programmation des systèmes embarqués, envisagée sous l’angle
de l’optimisation de l’usage des ressources, est un sujet riche, connecté
à de nombreux sous-domaines de l’informatique dont la compilation,
les systèmes d’exploitation ou l’architecture des processeurs. Dans
ce cours, nous nous focaliserons néanmoins sur les aspects de haut
niveau (expressivité, sûreté) de la programmation réactive dans la
mesure où ses aspects de bas niveau sont traités dans d’autres cours.

Langages synchrones

On a vu que les programmes réactifs peuvent être critiques, doivent
généralement obéir à des contraintes temporelles et de ressources, et
reposent sur des théories mathématiques dédiées, notamment l’auto-
matique. Il est donc légitime pour un langage de programmation dédié
aux systèmes réactifs de chercher à faciliter l’écriture de programmes
mettant en jeu des procédés de contrôle issus de l’automatique, tout en

http://www.cds.caltech.edu/~murray/amwiki/index.php/Second_Edition

programmation synchrone 5

assurant un niveau de sûreté élevé, et en étant économe en ressources.

Figure 5: les langages synchrones à flots
de données, du protolangage Spécifica-
tion Assistée par Ordinateur (SAO) d’Air-
bus (à gauche), au langage industriel
contemporain SCADE 6, développé par
la compagnie Ansys (à droite).

Les langages de programmation synchrones suivent une telle voie.
Issus de la recherche en informatique française, allemande et américaine
depuis les années 1980, ils reposent sur une notion de temps discret
global qui facilite la mise au point des programmes réactifs. Leur usage
est désormais routinier, notamment dans l’industrie du transport. À
titre d’exemple, le langage synchrone SCADE 6 a servi à la réalisation
des commandes de vol du modèle A380 d’Airbus.

Si plusieurs familles de langages synchrones existent, nous nous foca-
liserons sur celle des langages synchrones à flots de données (data-flow en
anglais) 9. Ceux-ci sont en effet largement les plus utilisés dans l’indus- 9. On pourra trouver un panorama his-

torique des autres familles de langages
synchrones dans l’article de Benveniste
et al. [1].

trie, tout en restant en développement actif dans le monde universitaire.
Ils facilitent la programmation réactive en offrant des concepts proches
à la fois de l’automatique et de la programmation fonctionnelle. Ils
sont issus de travaux pionniers de chercheurs grenoblois, qui ont voulu
comprendre et généraliser la méthodologie empirique suivie par les
ingénieurs pour concevoir les premiers dispositifs de contrôle numé-
riques 10. En une quarantaine d’années, ces langages ont contribué à 10. On peut lire l’article [3] original de ces

chercheurs au sujet du langage Lustre,
l’ancêtre commun de tous les langages
synchrones à flots de données.

l’évolution graduelle d’une méthodologie basée sur des schémas in-
formels, suggestifs mais sans contenu calculatoire, vers de véritables
langages de programmation rigoureux, dotés d’une sémantique solide
et de compilateurs sophistiqués (figure 5).

Le reste du cours

Le but de ce cours est donc d’offrir une introduction aux systèmes
réactifs ainsi qu’aux langages synchrones. Il sera structuré selon les
deux axes décrits au début de ce texte, programmation et algorithmique,
auxquels on adjoindra un troisième sujet, l’implémentation des langages
synchrones, qui occupera la fin du semestre.

programmation synchrone 6

Tout d’abord, on pratiquera la programmation dans un langage
synchrone à flots, le langage Heptagon. Heptagon est un langage Vous pouvez déjà avoir un aperçu du lan-

gage en consultant son site.

http://heptagon.gforge.inria.fr

très proche de SCADE 6, mais développé par des universitaires. Il
dispose de fonctionnalités modernes : compilation séparée, automates
imbriqués, gestion des tableaux. Sa proximité vis-à-vis de SCADE vous
assure que vos compétences seront transférables facilement. De plus, il
s’agit d’un logiciel libre d’une installation simple.

Dans un second temps, nous discuterons des bases d’automatique
appliquée qui servent de soubassements algorithmiques à la plupart des
programmes réactifs. Nous n’entrerons quasiment pas dans les détails
mathématiques, adoptant à la place une démarche expérimentale basée
sur la programmation de petits contrôleurs en Heptagon.

Enfin, nous terminerons le semestre avec une introduction à l’im-
plémentation des langages synchrones. Il s’agit d’étudier les analyses
statiques et techniques de génération de code employées par les compi-
lateurs, les secondes reposant sur les premières. Pour bien comprendre
leur fonctionnement, une connaissance minimale de la sémantique for-
melle des langages synchrones est indispensable, et celle-ci sera donc
présentée.

La programmation synchrone à flots de données

Environnement

Programme

Mémoire
So

rt
ie

s Entrées

N
ouvelétat Ét

at
co

ur
an

t

Figure 6: système réactif cyclique.

On a vu qu’un programme réactif est en interaction continue avec
un environnement physique via capteurs et actuateurs, comme illustré
de façon schématique par la figure 1. Les langages synchrones partent
du principe que l’exécution d’un tel programme se produit de façon cy-
clique, c’est à dire comme une suite d’interactions entre le programme
et son environnement. Un programme réactif n’agit en général pas
uniquement en fonction de la valeur courante des capteurs, mais égale-
ment de celles recueillies durant les interactions précédentes : il doit
donc, pour ce faire, avoir accès à une mémoire dont le contenu persiste
d’une interaction sur l’autre. De façon générale, chaque interaction se
divise en trois phases distinctes, lecture-calcul-écriture :

L. lecture des capteurs et de l’état courant de la mémoire ;

C. phase de calcul des consignes des actuateurs et du nouvel état ;

E. positionnement des actuateurs et mise à jour de la mémoire.

Les langages synchrones ne se préoccupent pas des détails bas-niveau
d’accès aux capteurs et actuateurs. Il est donc utile de s’abstraire de la
nature physique de l’environnement — sans toutefois oublier qu’elle
induit les contraintes temporelles discutées précédemment. Une fois
adopté ce point de vue simplifié, la structure d’un système réactif
cyclique peut être représentée comme à la figure 6, où capteurs et
actuateurs ont été remplacés par des entrées et sorties génériques.

0 1 2 3

LCE LCE LCE LCE

Figure 7: temps logique, temps physique.

http://heptagon.gforge.inria.fr

programmation synchrone 7

Le choix de structurer l’exécution comme une suite infinie d’inter-
actions introduit naturellement une notion de temps logique. Ce temps
logique est constituée d’une succession d’instants logiques, chacun d’eux
correspondant à une interaction entre programme et environnement. Le
caractère logique de cette temporalité réside dans l’omission volontaire
du temps d’exécution. En d’autres termes, un instant logique n’a pas
d’épaisseur : du point de vue synchrone, l’interaction avec l’environ-
nement est instantanée. On appelle ce principe l’hypothèse synchrone.
La figure 7 illustre la relation entre temps logique et temps physique :
le cycle Lecture-Calcul-Écriture (LCE) réalisé à chaque interaction peut
prendre un temps d’exécution variable. De plus, rien ne garantit que
les interactions soient exécutées à intervalle régulier.

On peut trouver l’hypothèse synchrone surprenante dans la mesure
où, comme on l’a vu, de nombreux systèmes réactifs sont soumis à
des contraintes temporelles strictes. On verra que ce choix simplifie en
réalité leur mise au point en repoussant la prise en compte du temps
physique aussi longtemps que possible durant le développement.

Les langages synchrones font donc le choix d’une exécution cy-
clique et d’une structuration du temps comme succession d’instants
logiques. À un certain niveau d’abstraction, un programme synchrone
peut donc être vu comme une machine à état, dont chaque transition
correspondrait à un instant logique. Comme on cherche un formalisme
mathématiquement simple pour décrire ces programmes, il est natu-
rel de se tourner vers la théorie des automates et, plus précisément,
des transducteurs, c’est à dires des automates finis qui, en plus de rece-
voir un mot en entrée, produit également un mot en sortie. Toutefois,
les automates restent des objets complexes : par exemple, raisonner
sur l’équivalence entre automates passe naturellement par la bisimula-
tion (cf. figure 8), une notion profonde mais relativement technique. Une
autre difficulté est celle de la modularité : si on peut définir diverses
manières d’assembler plusieurs automates en un automate plus gros
— par exemple par la composition séquentielle de transducteurs — le
résultat sera un automate à plat, sans structure. En bref, si le formalisme
des automates est indispensable à la vérification de systèmes réactifs
cycliques, il ne semble pas fournir un langage adapté au génie logiciel,
du moins s’il n’est pas complété par d’autres principes de structuration.

Les deux automates ci-dessous sont-ils
équivalents, c’est à dire, reconnaissent-ils
le même langage ? (Cet exemple simple
est issu d’un article de Bonchi et Pous [2].)

x y z
a, b a, b

a, b

u v w

b

a
a, b

a, b

On peut étudier cette question à l’aide
de la notion de bisimulation. Écrivons S
pour l’ensemble des états de nos
automates. Une bisimulation est une
relation R ⊆ S × S telle que, pour toute
paire d’états (s1, s2) ∈ R, on ait :

1. s1 est final ssi s2 est final,

2. si s1
a−→ s′1 alors il existe s′2 tel

que s2
a−→ s′2 et (s′1, s′2) ∈ R,

3. si s2
a−→ s′2 alors il existe s′1 tel

que s1
a−→ s′1 et (s′1, s′2) ∈ R.

On peut montrer que deux états s1, s2
d’automates finis déterministes recon-
naissent le même langage ssi il existe
une bisimulation R telle que (s1, s2) ∈ R.
Dans le cas qui nous occupe, existe-t-il
une bisimulation R telle que (x, u) ∈ R ?
Oui ! Essayez de définir R = {(x, u), . . . }
en énumérant les couples manquants.
Figure 8: bisimulations entre automates.

On peut contraster la notion d’automate à une autre notion mathé-
matique qui, bien qu’élémentaire, s’est révélée très compatible avec le
génie logiciel : celle de fonction. Une fonction est un objet plus simple
qu’un automate au sens où l’égalité entre fonctions est triviale — par
définition, deux fonctions sont égales lorsqu’elles envoient les mêmes
entrées vers les mêmes sorties. De plus, les langages dits “fonctionnels”
tels que Haskell ou OCaml ont montré comment bâtir un langage de
programmation au dessus de la notion de fonction. Il est donc naturel

programmation synchrone 8

de chercher à concilier le monde des automates et celui des fonctions.

Transducteur

Fonction synchrone

Σ2 Σ1

S S

Σω
2 Σω

1

compilation

Figure 9: compilation des langages syn-
chrones à flots de données.

Pour ce faire, on peut débuter par une observation simple. Si Σ1

est l’alphabet du mot d’entrée et Σ2 l’alphabet du mot de sortie, un
transducteur déterministe 11 A implémente une fonction fA : Σ∗

1 → Σ∗
2

11. Cette fonction peut être partielle si le
transducteur est incomplet. Plus générale-
ment, un transducteur non-déterministe
donne lieu à une relation RA ⊆ Σ∗

1 ×
Σ∗

2 . Les relations implémentables par
des transducteurs sont dites ration-
nelles (ou régulières), par analogie avec les
langages et expressions rationnelles (ou
régulières).

telle que fA(w) = w′ lorsque A produit le mot w′ en lisant le mot w.
Cette fonction a toujours plusieurs propriétés remarquables, notamment
son caractère synchrone : elle associe toujours un mot de longueur n à
un mot de longeur n. L’idée clef des langages synchrones dits à flots de
données est de partir de la fonction synchrone pour aller vers l’automate,
plutôt que l’inverse. Autrement dit, un programme va consister en
une fonction synchrone, et c’est le compilateur qui va reconstruire le
transducteur sous-jacent, celui-ci étant vu comme une implémentation
concrète de la fonction (cf figure 9). De plus, comme on s’intéresse
aux systèmes réactifs, qui s’exécutent sans discontinuer, la fonction
synchrone va consommer et produire non pas des mots finis dans Σ∗

1
et Σ∗

2 , mais des suites infinies de lettres, aussi appelées flots, et dont
les ensembles sont dénotés Σω

1 et Σω
2 . On espère ainsi bénéficier du

meilleur des deux mondes : la proximité des automates avec le modèle
d’exécution sous-jacent, et l’expressivité des langages fonctionnels 12. 12. L’idée qui consiste à décrire des sys-

tèmes réactifs avec état (comme les auto-
mates) par des fonctions de flots est issue
du travail pionnier de Kahn [9].Premiers programmes

Nous allons maintenant explorer les langages synchrones à flots de
données de façon concrète. Notre véhicule pour ce faire sera le langage
Heptagon, qui est très proche du langage industriel SCADE 6 mais
dont le compilateur est un logiciel libre.

Nœuds. Un programme Heptagon est un ensemble de fonctions syn-
chrones sur les flots de données. On appelle ces fonctions des nœuds.
Chaque nœud dispose d’une interface, liste finie de sorties et d’entrées
déclarées avec leurs types, ainsi que d’un corps, qui est une liste d’équa-
tions définissant la valeur des sorties en fonction de celles des entrées.
On peut par exemple définir un nœud correspondant à la fonction
identité sur les entiers comme ci-dessous. On peut représenter le comportement

d’un nœud sur une entrée choisie à l’aide
d’un chronogramme, c’est à dire d’un ta-
bleau dont chaque colonne correspond à
un instant logique distinct.

x -2 0 1 -3 2 2 . . .
y -2 0 1 -3 2 2 . . .

Ce chronogramme illustre le caractère
synchrone de la fonction identité, vue
comme agissant sur des flots : les n pre-
mières valeurs de y dépendent unique-
ment des n premières valeurs de x. On
verra que ce sera aussi le cas de fonctions
bien plus complexes.

node identite(x : int) returns (y : int)

let

y = x;

tel

Il est important de remarquer que le type int, en Heptagon, ne désigne
pas un unique entier, mais un flot d’entiers. Il en va de même pour les
types float, bool, etc. Le nœud ci-dessous représente donc la fonction
mathématique id : Zω

32 → Zω
32, où Z32 désigne l’ensemble des entiers

relatifs représentable en complément à deux sur 32 bits 13.

13. En réalité, Heptagon ne fixe pas la
taille des entiers utilisés, mais aligne son
type int au type int du langage C. Sa
taille dépend donc de votre machine, et
plus précisément du compilateur C uti-
lisé pour compiler le code généré par
Heptagon (cf. plus bas).

programmation synchrone 9

On peut compiler un programme Heptagon en demandant au com-
pilateur heptc de produire une sortie en langage C. Les fichiers sources
ainsi générés contiennent une implémentation du transducteur sous
une forme ressemblant 14 au code ci-dessous. 14. En pratique, le compilateur applique

certaines transformations qui rendent le
code moins lisible mais plus efficace et
plus court.

/* Définition de l'état du transducteur. */

struct identite_state { };

/* Défininition de la fonction d'initialisation de l'état. */

void identite_reset(struct identite_state *state) { }

/* Défininition de la fonction de transition. */

void identite_step(struct identite_state *state,

int x, int *y) { *y = x; }

On verra lors des cours et séances de travaux pratiques suivants une
façon commode d’exécuter la fonction de transition.

Un nœud Heptagon peut également disposer de variables locales, qui
ne sont ni des entrées ni des sorties. Elles doivent être déclarées avec le
mot clef var et définies dans le corps du nœud.

node identite_bis(x : int) returns (y : int)

var z : int;

let

z = x;

y = z;

tel

Un point très important, commun à tous les langages synchrones à flots
de données, est que l’ordre des définitions n’importe pas. Ainsi, on
peut réécrire notre fonction identité de façon strictement équivalente
mais en définissant y avant z.

node identite_ter(x : int) returns (y : int)

var z : int;

let

y = z;

z = x;

tel

Cet exemple montre que le point-virgule qui sépare les équations n’est
pas la construction de séquencement qu’on trouve en C, Java ou OCaml.
Au contraire, il s’agit simplement de marquer la fin d’une équation
dans le bloc de définitions mutuellement récursives compris entre let

et tel.
La possibilité d’écrire des équations mutuellement récursives est

nécessaire pour pouvoir écrire des fonctions de flots générales, comme
on le verra ultérieurement. Elle ouvre néanmoins la porte à la possibilité
d’erreurs. Considérons le code ci-dessous, en apparence une simple
modification du précédent.

programmation synchrone 10

node identite_bad(x : int) returns (y : int)

var z : int;

let

y = z;

z = y;

tel

Ce programme est très suspect : on a défini y en fonction de z, et vice-
versa ! Si l’on essaie de le compiler avec heptc, on obtient un message
d’erreur.

$ heptc -target c ex-04-bad.ept

Causality error: the following constraint is not causal.

^z < y || ^y < z

On appelle les erreurs causées par ce genre de définitions circulaires,
ou cercles vicieux, des erreurs de causalité 15. L’étude de la notion de 15. On trouve parfois employé le terme

plus sobre de productivité.causalité est au coeur des langages synchrones, et il faut en comprendre
le fonctionnement général pour programmer productivement dans un
langage comme Heptagon. On y reviendra en détail lors des cours
suivants, y compris une explication de ce message d’erreur.

Programmation flots de données et causalité

Opérations combinatoires. On a vu que tout programme Heptagon
manipule des flots de données, c’est à dire des suites infinies de valeurs.
Tout comme les types int ou bool désignent respectivement les flots
d’entiers et de booléens, en Heptagon les littéraux désignent des flots
constants. Un nœud Heptagon peut avoir plu-

sieurs entrées et plusieurs sorties. On
peut grouper les déclarations succes-
sives des varibales de même type en sé-
parant les noms de variables par des
virgules, et les groupes de variables
de même type par des points-virgules.
Ainsi, x, y : int; z : int est équi-
valent à x : int; y : int; z : int.

node f() returns (x, y : int; z : bool)

let

x = 1;

y = 42;

z = false;

tel

Ainsi, dans le nœud ci-dessus, les littéraux 0, 42 ou false désignent
des flots constants. Les trois sorties x,y et z sont donc décrites par le
chronogramme ci-dessous.

x 1 1 1 1 1 1 1 1 1 . . .
y 42 42 42 42 42 42 42 42 42 . . .
z false false false false false false false false false . . .

Pour formuler précisément les constructions d’un exemple, il est utile
d’employer une notation formelle pour désigner le flot associé à une
expression Heptagon. Autrement dit, on va distinguer la sémantique

programmation synchrone 11

d’une expression de sa syntaxe. Si e est une expression Heptagon, on
écrira JeK pour l’objet sémantique associé. Il s’agira généralement d’un
flot ou d’un n-uplet de flots. La sémantique (JlKn)n∈N d’un littéral l est
un flot dont le nème élément est défini par l’équation

JlKn = l.

Un nœud Heptagon est une fonction de flots, et peut donc être
appliqué à des arguments pour produire des résultats. Ainsi, on peut
appeler le nœud précédent depuis un autre nœud situé plus bas dans
le même fichier 16. 16. En Heptagon, chaque fichier donne

lieu à un module distinct. On peut faire
référence à un nœud situé dans un
autre module en le préfixant par le nom
du module en question. Par exemple,
si le nœud f a été défini dans le fi-
chier a.ept, on peut y faire référence
depuis un fichier b.ept en écrivant A.f.
Le fichier a.ept doit avoir été compilé
avant b.ept de sorte à produire un fichier
d’interface a.epci. Si a.epci est présent
dans un répertoire DIR autre que b.ept,
on peut indiquer ce chemin via heptc -I

DIR.

node g() returns (o : int)

var x, y : int; z : bool;

let

(x, y, z) = f();

o = x + y;

tel

Le nœud g, en plus de sa sortie o, déclare trois variables locales x,y,z

qui servent à stocker les résultats de f. La variable z n’est pas utilisée.
La sortie de g est définie comme la somme des deux premières sor-
ties de f. En Heptagon, la somme agit point à point sur les flots, tout
comme les autres opérateurs binaires — soustraction, multiplication,
division, opérateurs logiques et de comparaison, etc. On peut forma-
liser ce comportement par les équations sémantiques ci-dessous. La
dernière d’entre-elles, écrite pour une opération binaire op quelconque,
généralise les autres.

Je1 + e2Kn = Je1Kn + Je2Kn

Je1 − e2Kn = Je1Kn − Je2Kn

. . .

Jop(e1, e2)Kn = op(Je1Kn, Je2Kn)

En appliquant ces définitions au nœud g, on obtient

JoKn = Jx + yKn

= JxKn + JyKn

= 1 + 42

= 43.

La sortie de g est donc le flot constant 43.
Tout comme les opérateurs arithmétiques et logiques, la construc-

tion if/then/else d’Heptagon fonctionne de façon point à point.

Jif e1 then e2 else e3Kn =

{
Je2Kn si Je1Kn = true
Je3Kn si Je1Kn = false

programmation synchrone 12

Question 3. Supposons qu’on fournisse comme entrée k au nœud défini
ci-dessous le flot constant 12. Que vaut la sortie o?

node h(k : int) returns (o : int)

var x, y : int; z : bool;

let

(x, y, z) = f();

o = k + if z then 2 * x else y;

tel

Opérateurs séquentiels. Jusqu’ici, nous n’avons écrits que des nœuds
manipulant des flots constants, et des opérateurs dont la valeur du
flot de sortie à l’instant courant ne dépend que des valeurs des flots
d’entrée à l’instant courant. De tels opérateurs sont dits combinatoires.
Ce n’est pas très excitant : on a essentiellement écrit des expressions Pour demander au compila-

teur Heptagon de vérifier qu’un
nœud est combinatoire, on peut
le définir à l’aide du mot-clef fun
plutôt que node.

arithmétiques et booléennes où le temps ne joue aucun rôle. La pre-
mière construction avec une comportement temporel non-trivial que
nous allons étudier sera l’opérateur binaire fby. Un tel opérateur est
dit séquentiel. Sa sémantique est donnée par les équations suivantes.

Je1 fby e2Kn =

{
Je1K0 si n = 0
Je2Kn−1 si n > 0

Informellement, x fby y calcule le flot obtenu en insérant le premier
élément du flot x devant tous les éléments du flot y. En Heptagon, cet
opérateur associe à droite : l’expression x fby y fby z est un raccourci
pour x fby (y fby z).

Question 4. Expliquer pourquoi choisir de rendre l’opérateur fby associatif à
gauche serait bien moins utile.

On peut illustrer le fonctionnement de fby avec, par exemple, le
nœud i ci-dessous, variante du précédent où on choisit entre x et 2 * y

selon la valeur courante du flot true fby z, variable au cours du temps.

node i(k : int) returns (o : int)

var x, y : int; z : bool;

let

(x, y, z) = f();

o = k + if true fby z then 2 * x else y;

tel

On peut comprendre son comportement via un chronogramme qui
représente les flots de sortie et locaux de i pour une entrée k arbitraire.

programmation synchrone 13

k 4 -12 27 48 21 -20 5 . . .
x 1 1 1 1 1 1 1 . . .
y 42 42 42 42 42 42 42 . . .
z false false false false false false false . . .
true fby z true false false false false false false . . .
o 6 30 69 90 63 22 47 . . .

On peut ainsi vérifier que JoK0 = JkK0 + 2 et JoKn+1 = JkKn+1 + 42.
L’opérateur fby trouve toute son utilité en conjonction avec l’utili-

sation de définitions récursives. Pour vous en convaincre, essayez de
résoudre la question suivante.

Question 5. Définir un nœud half avec une seule sortie booléenne qui
calcule le flot booléen périodique o alternant entre true et false, c’est à dire tel
que JoK2k = true et JoK2k+1 = false. Les premières valeurs du flot o doivent
donc être true, false, true, false . . .

Pour résoudre cette question, on peut observer que la première
valeur de o doit être le booléen true, suivi de la négation du flot o lui
même ! Ce qui nous mène à la définition suivante.

node half() returns (o : bool)

let

o = true fby not o;

tel

Pour nous convaincre du fonctionnement, on peut effectuer un bref
calcul : on a JoK0 = true et JoKn+1 = JoKn, où b désigne la négation
d’un booléen b. On peut aussi représenter les flots o et not o sur un
chronogramme, et observer que le flot not o est égal au suffixe de o

qui commence au deuxième instant.

o = true fby not o true false true false true false . . .
not o false true false true false true . . .

On a vu à la fin de la séance précédente que les définitions récursives
peuvent introduire des cycles problématiques. Ce n’est pas le cas de
la définition de o dans le nœud half, qui est parfaitement causale. En
effet, on voit qu’en dépliant la définition de o suffisamment, on peut
obtenir un nombre de valeurs arbitraire : On écrit x :: xs pour le flot dont la tête est

le scalaire est x et la queue est le flot xs.
Il s’agit d’une opération qui n’est pas dis-
ponible telle quelle en Heptagon. On a

Je1 fby e2K = Je1K0 :: Je2K.

JoK = Jtrue fby not oK

= true :: Jnot (true fby not o)K

= true :: false :: Jnot (not o)K

= true :: false :: JoK

= true :: false :: true :: Jnot oK

. . .

programmation synchrone 14

On peut écrire beaucoup de programmes intéressants en combinant
l’opérateur fby et des définitions récursives. En particulier, les défini-
tions mutuellement récursives. L’exemple suivant montre comment les
utiliser pour définir simultanément le flot nat des entiers naturels et
celui des entiers strictement positifs pos.

nat = 0 fby pos 0 1 2 . . .
pos = nat + 1 1 2 3 . . .

node j() returns (nat, pos : int)

let

nat = 0 fby pos;

pos = nat + 1;

tel

Encore une fois, cette définition est causale : les flots nat et pos défi-
nissent tous deux une infinité d’éléments.

Question 6. Dépliez les définitions de nat et pos pour montrer qu’ils
contiennent au moins trois éléments chacuns, à la manière de ce que nous
avons fait pour la sortie du nœud half.

Si l’opérateur fby est le plus important, deux autres opérateurs sont
également utiles : il s’agit de l’opérateur unaire pre et de l’opérateur
binaire -> (prononcer “init”). Leur sémantique est décrite par les équa-
tions suivantes. Alternativement, on pourrait définir

Jpre eK = nil :: JeK.

Jpre eKn =

{
nil si n = 0
JeKn−1 si n > 0

Je1 -> e2Kn =

{
Je1K0 si n = 0
Je2Kn si n > 0

La sémantique de pre exige une explication. En Heptagon, on suppose
que chaque flot est capable de transporter une valeur spéciale bapti-
sée nil, qui représente un flot non initialisé. C’est la valeur produite par
l’opérateur pre au premier instant. Elle est absorbante par tous les opé-
rations arithmétiques et logiques — par exemple, nil+ x = x + nil = nil.
Le compilateur Heptagon utilise une analyse d’initialisation pour s’as-
surer que cette valeur n’influe pas sur les résultats du calcul. Ainsi,
le nœud ci-dessous est rejeté puisque sa sortie n’est pas initialisée au
premier instant.

node i(x : int) returns (y : int)

let

y = pre x;

tel

Certains programmeurs préfèrent utiliser pre et -> à fby dans la me-
sure où leur emploi permet de séparer proprement, lors de la définition
d’un flot x, le cas de base x0 du cas inductif xn+1. Ainsi, pour définir le
flot nat, on peut partir de l’équation intuitive nat = 1 + pre nat, puis
l’initialiser via l’opérateur -> comme suit.

programmation synchrone 15

node k() returns (nat : int)

let

nat = 0 -> (1 + pre nat);

tel

Question 7. Pouvez-vous exprimer fby en utilisant uniquement pre et ->?

S’il peut être tentant de remplacer systématiquement fby par l’usage
conjoint de pre et ->, il s’avère plus naturel dans certaines situations.
Par exemple, pour donner une définition simultanée de nat et pos

comme vu précédemment.

nat = 0 fby pos;

pos = nat + 1;

nat pos

dép. instantanée

dép. retardée

nat2 = 0 -> pos2;

pos2 = nat2 + 1;

nat2 pos2

dép. instantanée

dép. instantanée

Figure 10: dépendances et causalité.

Causalité. Les exemples précédents montrent l’importance des défini-
tions récursives dans la programmation synchrone à flots de données.
Néanmoins, la récursion est aussi utile que dangereuse : on a vu qu’il
est facile d’écrire des cercles vicieux, comme x = x. On peut envisager
ces équations de deux manières.

1. On peut décider que n’importe quelle suite en est solution, auquel
cas le langage devient non-déterministe.

2. On peut décider qu’elles n’ont pas de contenu calculatoire, c’est à
dire qu’on ne peut jamais obtenir le premier élément de x simplement
en dépliant l’équation. Elles ne sont pas causales.

En Heptagon, et dans ce cours, on va opter pour la seconde option, et
préserver le déterminisme du langage en rejetant ces cercles vicieux 17. 17. D’autres langages synchrones comme

Signal optent pour le premier point de
vue. Les programmes écrits dans ces lan-
gages décrivent donc des relations plutôt
que des fonctions. On peut lire l’article de
Le Guernic et al. [10] pour en apprendre
plus sur cette approche.

Quel critère algorithmique employer pour rejeter, tout en acceptant
la récursion mutuelle de codes tels que le nœud j défini plus haut ?
La recherche en langages synchrones a proposé de nombreuses solu-
tions à ce problème. Heptagon utilise une des plus simples d’entre
elles : les dépendances cycliques instantanées sont interdites. On peut
comprendre ce critère en dessinant le graphe de dépendance d’un nœud.
Il s’agit d’un graphe orienté dont les sommets x, y sont les variables
déclarées dans le nœud et les arcs x → y indique que y dépend de x. La
notion de dépendance est très simple : y dépend de x si x apparaît dans
la définition de y. En particulier, une entrée ne peut jamais dépendre
d’aucune variable puisqu’elle n’a pas de définition dans le corps du
nœud. On distingue, de plus, les dépendances instantanées des dé-
pendances retardées. Ces dernières sont celles où x apparaît dans la
définition de y soit dans l’argument gauche d’une utilisation de l’opéra-
teur fby, ou dans l’argument d’une utilisation de l’opérateur pre. Ainsi,
le nœud i est causal parce que nat dépend de pos de façon retardée, et
donc qu’aucun cycle instantané n’est présent (cf. figure 10, partie supé-
rieure). En revanche, si l’on utilise -> à la place de fby dans la définition
de nat, le graphe de dépendances devient cyclique (cf. figure 10, partie
inférieure). En d’autres termes, le flot nat2 dépend instantanément de
lui même (à travers pos2).

programmation synchrone 16

Question 8. Essayez de développer Jnat2K. Que constatez-vous ?

Si vous essayez de compiler le bloc d’équation définissant nat2

et pos2, vous obtiendrez un message d’erreur analogue à celui donné
au tout début de cette section.

Causality error: the following constraint is not causal.

^pos2 < nat2 || ^nat2 < pos2

La formule, ou contrainte, qui accompagne ce message est une représen-
tation compacte du graphe de dépendance de ce nœud. La première
sous-contrainte ^pos2 < nat2 indique que la lecture de pos2, represen-
tée par le préfixe ^, doit avoir lieu strictement avant l’écriture de nat2,
puisque ce dernier en dépend. La deuxième, ^nat2 < pos2, indique
que la lecture de nat2 doit avoir lieu strictement avant l’écriture de pos2.
L’opérateur || indique que ces deux contraintes sont vraies en paral-
lèle, c’est à dire simultanément. De plus, toute variable x induit une
contrainte implicite x < ^x (elle doit avoir été écrite avant d’être lue).
On a donc la contrainte totale

^pos2 < nat2 || ^nat2 < pos2 || pos2 < ^pos2 || nat2 < ^nat2

qui n’est pas satisfiable, puisque la transitivité de l’ordre implique
que nat2 < nat2 et pos2 < pos2. Ce raisonnement est l’analogue sym-
bolique de l’existence d’un cycle dans le graphe de dépendances.

Réinitialisation. On a vu avec les exemples précédents qu’Heptagon
disposait de trois opérateurs séquentiels primitifs : fby, pre et ->. Ces
opérateurs élémentaires peuvent être combinés pour décrire des com-
portements temporels complexes. L’ensemble des opérateurs séquen-
tiels utilisés dans un nœud f, ainsi que dans les nœuds appelés depuis f,
détermine l’état de f. C’est l’état du transducteur généré par le compi-
lateur heptc à partir de la fonction de flot écrite par le programmeur.

Il peut, dans certaines circonstances, être utile de réinitialiser l’état
d’un nœud, ou plus généralement d’un fragment de code. Pour ce faire,
Heptagon dispose d’une construction particulière, dite de réinitialisation
modulaire. Contrairement aux constructions vues jusqu’à présent, elle ne
s’applique pas à une expression — ce n’est pas un opérateur — mais à
un bloc de définitions. Les valeurs calculées par reset block every c

sont celles calculées par le bloc block, mais l’état interne de celui-ci est
réinitialisé lorsque la valeur courante du flot booléen c est vrai. Ainsi,
le code ci-dessous réinitialise le calcul des entiers naturels dès que le
flot local c prend la valeur true.

node nat_reset() returns (o : int)

var c : bool;

let

programmation synchrone 17

reset o = 0 fby (o + 1); every c;

c = true fby false fby false fby c;

tel

Ainsi, le nœud k ci-dessus calcule une suite d’entiers périodique, comme
le montre le chronogramme suivant.

o 0 1 2 0 1 2 0 1 2 . . .
c true false false true false false true false false . . .

La construction de réinitialisation modulaire peut rendre un programme
difficile à comprendre, et est donc à utiliser avec parcimonie. On verra
qu’elle est surtout utilisée par la mécanique interne des compilateurs
synchrones, comme base pour des constructions de plus haut niveau.

Types structurés et énumérés. Heptagon permet la définition de types
structurés : types énumérés, types enregistrements, tableaux. Les types
enregistement ressemblent aux enregistrements d’OCaml, ou encore
aux structs du langage C. Les types énumérés sont des types finis
dont chaque élément a un nom déclaré. Nous étudierons les tableaux
ultérieurement.

Les types structurés sont utilisables pour manipuler plusieurs valeurs
simultanément, en donnant un nom à chacune d’entre elles.

type cpl = { re : float; im : float }

fun add(x, y : cpl) returns (o : cpl)

let

o = { re = x.re +. y.re; im = x.im +. y.im }

tel

fun conj(x : cpl) returns (o : cpl)

let

o = { re = x.re; im = -. x.im }

tel

Le code ci-dessous fournit un exemple d’utilisation d’un enregistrement
pour manipuler des couples de flottants représentant des nombres com-
plexes. Le champ transportant la partie réelle est re et celui transportant
la partie imaginaire est im. Comme pour les types scalaires, un type
enregistrement décrit des flots d’enregistrements, et un enregistrement
littéral tel que { re = 1.0; im = 0.0 } représente un flot constant. Xstart Y Z

a

b

c

a

Figure 11: automate pour (ab∗c)+.
Le mot-clef fun utilisé dans le code ci-dessus indique au compilateur

Heptagon qu’on souhaite définir un nœud combinatoire. Si le corps de
la fonction dépend du temps, par exemple via l’utilisation de l’opéra-
teur fby, le programme sera rejeté à la compilation. Par conséquent,

programmation synchrone 18

un nœud introduit par le mot-clef node peut appliquer une fonction
combinatoire (introduite par fun), mais la réciproque n’est pas vraie.

Un exemple d’utilisation des types énumérés est donné par le pro-
gramme ci-dessous, qui encode un automate fini reconnaissant le lan-
gage rationnel (ab∗c)+ (cf. figure 11). On utilise les types énumérés
pour définir le type des lettres de l’alphabet d’entrée, ainsi que le type
des états. Celui-ci comprend, en plus des états X, Y, Z, un état Dead
représentant l’état puits implicite dans les automates incomplets.

(* Type des lettres de l'alphabet d'entrée. *)

type alpha = A | B | C

(* Type des états de l'automate. *)

type astate = X | Y | Z | Dead

(* Automate reconnaissant le langage (a b* c)+. *)

node j(l : alpha) returns (accept : bool)

var s, sprev : astate;

let

s = if (sprev, l) = (X, A) then Y

else if (sprev, l) = (Y, B) then Y

else if (sprev, l) = (Y, C) then Z

else if (sprev, l) = (Z, A) then Y

else Dead;

sprev = X fby s;

accept = (s = Z);

tel

Question 9. Dessinez un chronogramme représentant les six premières va-
leurs des flots l, s, sprev et accept et où les six premières valeurs de l

sont a, b, b, c, a, b, c, c, a, b, c.

Horloges

Entrelacement. Jusqu’ici, nous n’avons écrit que des exemples où
chaque flot avance au même rythme. Cette contrainte semble natu-
relle, dans la mesure où l’on traite de fonctions synchrones. Néanmoins,
les langages synchrones comme Heptagon ou SCADE offrent une flexi-
bilité utile en pratique.

Question 10. Définissez le flot o tel que JoK2k = k et JoK2k+1 = 0.

Une réponse à cette question est fournie par le nœud ci-dessous.
Celui-ci définit le flot x des entiers naturels qui “bégaie”, c’est-à-dire,
où chaque entier est répété deux fois. On utilise ensuite l’opérateur if
pour remplacer tous les éléments de rang impair par des 0.

h true false true false . . .
x 0 0 1 1 . . .
o 0 0 1 0 . . .

programmation synchrone 19

node k() returns (o : int)

var x : int; h : bool;

let

x = 0 fby 0 fby (x + 1);

o = if h then x else 0;

h = true fby not h;

tel

Le code ci-dessus est critiquable : passer par la définition du flot x

est peu naturel. Peut-on réutiliser la définition du flot des entiers
naturels nat = 0 fby (nat + 1) donnée précédemment ?

Question 11. Montrez que remplacer x par nat dans k définit un flot o tel
que JoK2k = 2k et JoK2k+1 = 0.

Ce qu’on voudrait faire, c’est entrelacer les valeurs du flot nat avec
celles du flot 0. Heptagon dispose d’une construction idoine, l’opéra-
teur d’entrelacement merge c e1 e2, qu’on peut comprendre comme
un cousin assez lointain de if c then e1 else e2. Contrairement à
la conditionnelle, la fusion de flots n’est pas un opérateur point-à-
point. Informellement, lorsque le prochain élément de JcK est vrai (resp.
faux), la sortie de Jmerge c e1 e2K est produite en consommant un
élement de Je1K (resp. Je2K), sans consommer celui de Je2K (resp. Je1K)
— contrairement à ce qui se passerait avec Jif c then e1 else e2K.

Avant de donner une définition plus rigoureuse du comportement
de l’opérateur d’entrelacement, il est utile de revenir à notre exemple,
reformulé avec l’aide de l’entrelacement pour définir o en fonction du
flot des entiers naturels sans bégaiement.

node l() returns (o : int)

var x : int; h : bool;

let

x = 0 fby (x + 1);

o = merge h x 0;

h = true fby not h;

tel

Pour comprendre le fonctionnement de ce nœud, on peut suivre la
même méthodologie que précédemment, et dessiner un chronogramme.
Pour ce faire, il faut décider comment les valeurs de chaque flot sont
calculées au cours du temps. Une première possibilité naïve serait de
supposer que nat et h sont calculés au même rythme, comme représenté
par le chronogramme ci-dessous.

h true false true false true false true false true . . .
x 0 1 2 3 4 5 6 7 8 . . .
o 0 0 1 0 2 0 3 0 4 . . .

programmation synchrone 20

Sur ce chronogramme, on a représenté en rouge les dépendances entre
les valeurs du flot x et celles du flot o. Chacune de ces valeurs, à
l’exception la première, est consommée strictement après avoir été pro-
duite. Elle doit donc être mémorisée. Plus précisément, à l’instant 2k, le
flot JoK ne contient que les k premières valeurs de JxK, et les k valeurs
suivantes doivent être mémorisées. En d’autres termes, la quantité de
mémoire nécessaire pour exécuter semble croître irrémédiablement en
fonction du temps. C’est inadmissible : du point de vue de SCADE et
Heptagon, un programme synchrone doit s’exécuter en utilisant une
quantité de mémoire bornée à la compilation.

Question 12. Quelle implémentation du nœud l pourrait garantir cette
propriété ?

Pour exécuter ce programme en espace borné, il faut nécessairement
que le flot x soit produit plus lentement que le flot o, de sorte que ses
éléments soient disponibles juste à temps. C’est ce que le chronogramme
ci-dessous représente, les espaces vides marquant les instants auxquels
le prochain élément du flot correspondant n’est pas calculé.

h true false true false true false true false true . . .
x 0 1 2 3 4 . . .
o 0 0 1 0 2 0 3 0 4 . . .

On voit qu’en ralentissant x, on a réussi à aligner la production de ses
éléments avec leur consommation dans le flot o. Mémoriser les valeurs
de x n’est donc plus nécessaire.

On peut maintenant donner un sens précis à l’opérateur d’entrela-
cement. Sur le chronogramme précédent, on a marqué l’absence d’un
flot par une case vide. En pratique, pour décrire l’opérateur d’entrelace-
ment, il est utile de disposer d’une valeur spéciale symbolisant l’absence,
notée abs, et qu’on peut aussi utiliser dans les chronogrammes.

h true false true false true false true false true . . .
x 0 abs 1 abs 2 abs 3 abs 4 . . .
o 0 0 1 0 2 0 3 0 4 . . .

En manipulant la valeur spéciale abs, on peut désormais décrire la
sémantique de l’opérateur d’entrelacement.

Jmerge c e1 e2Kk =


Je1Kk si JcKk = true et Je2Kk = abs

Je2Kk si JcKk = false et Je1Kk = abs

abs si JcKk = abs et Je1Kk = abs et Je2Kk = abs

On voit que cette définition est partielle. Lorsque le kème élément du
flot JcK est vrai, Jmerge c e1 e2Kk est défini si seulement si le kème
élément du flot Je2K est absent, et symétriquement. De plus, on considè-
rera que si Jmerge c e1 e2Kk est indéfini, alors Jmerge c e1 e2Kk′ est
également indéfini pour tout k′ > k.

programmation synchrone 21

Cette formulation à l’aide de valeurs absentes permet d’en faire une
fonction synchrone : les n premières valeurs de sa sortie dépendent
uniquement des n premières valeurs de ses entrées. C’est cette propriété
qui assure que l’opérateur d’entrelacement peut toujours être utilisé
sans avoir à mémoriser implicitement ses entrées, et donc qu’il est
combinatoire ! Le prix à payer est que les flots à entrelacer doivent
comprendre des valeurs absentes exactement aux rangs attendus, sans
quoi l’entrelacement est indéfini. Les langages synchrones à flots de
données comme Heptagon assurent cette propriété via une analyse
statique dédiée, baptisée calcul d’horloge.

Sélection. Le fonctionnement du calcul d’horloge est plus facile à
expliquer sur un opérateur qui joue un rôle inverse à celui de l’opérateur
d’entrelacement. Si l’opérateur d’entrelacement permet de combiner
plusieurs flots lents pour en obtenir un rapide, l’opérateur de sélection 18

18. Il est aussi appelé opérateur d’échantillo-
nage (sampling en anglais) dans la docu-
mentation d’Heptagon et la littérature
scientifique.

transforme un flot rapide en flot lent par la suppression de certains de
ses éléments. Intuitivement, Je when cK est le flot JeK dont on a conservé
la valeur JeKk ssi JcKk est vrai. Les autres valeurs sont remplacées par abs,
dans le but de rendre synchrone l’opérateur de sélection.

Je when cKk =

{
JeKk si JcKk = true
abs si JcKk = false

Question 13. Définissez un nœud envoyant un flot d’entiers y dans le flot o
tel que JoK2k = k et JoK2k+1 = JyK2k+1.

Il s’agit d’une variation sur le dernier nœud que nous avons défini.
Les valeurs de rang pair dans y doivent être éliminées pour ne laisser
que les valeurs de rang impair. La construction y when h n’est que du

sucre syntaxique pour y when true(h).
node m(y : int) returns (o : int)

var x : int; h : bool;

let

x = 0 fby (x + 1);

o = merge h x (y when false(h));

h = true fby not h;

tel

On peut dessiner un chronogramme pour ce nœud où les valeurs de y

sont laissées abstraites.

y y0 y1 y2 y3 y4 y5 y6 . . .
h true false true false true false true . . .
x 0 abs 1 abs 2 abs 3 . . .
y when false(h) abs y1 abs y3 abs y5 abs . . .
o 0 y1 1 y3 2 y5 4

programmation synchrone 22

On constate bien que les flots JxK et Jy when false(h)K ne sont jamais
présents au même instant, ce qui est nécessaire au bon fonctionnement
de l’opérateur d’entrelacement avec la sémantique donnée plus haut.
Cette condition est vérifiée statiquement par le compilateur via le
calcul d’horloge. Pour vous en convaincre, essayez de compiler le nœud
précédent, en remplaçant y when false(h) par y when h.

$ heptc badmerge.ept

(y when h) : File "badmerge.ept", line 5, characters 17-25:

> o = merge h x (y when h);

> ^^^^^^^^

Clock Clash: this value has clock 'a on true(h),

but is expected to have clock 'a on false(h).

Ce message indique que l’expression y when h n’a pas la bonne hor-
loge. L’horloge d’une expression e est une formule qui décrit un flot
booléen ck tel que ckk est vrai ssi JeKk ̸= abs. Elle permet de s’assurer
que les valeurs transportées par le flot sont cohérentes avec son uti-
lisation. Ce n’est pas le cas dans l’exemple qui nous occupe : d’une
manière générale, le flot e when h a l’horloge 'a on true(h), indi-
quant qu’il est présent lorsque h est vrai, mais devrait avoir une horloge
de la forme 'a on false(h), puisqu’en tant que troisième argument
de merge h il est lu lorsque h est faux.

e1 : C e2 : C
e1 + e2 : C

e : C x : C
e when b(x) : C on b(x)

x : C
e1 : C on true(x)

e2 : C on false(x)
merge x e1 e2 : C

Figure 12: calcul d’horloge (extrait).

Heptagon emploie un jeu de règles pour décider de la cohérence des
horloges d’un programme. Nous n’allons pas rentrer dans les détails du
fonctionnement de ce système. Nous nous contenterons de préciser que
les horloges peuvent être vues comme des types, et le calcul d’horloge
comme un système de types. Des versions simplifiées de quelques-unes
des règles de ce système sont présentées à la figure 12.

— La première règle spécifie que les deux arguments d’une addi-
tion doivent avoir la même horloge, qui est également l’horloge du
résultat.

— La deuxième règle indique que les deux arguments de when doivent
être présents aux mêmes instants mais que la sortie est présente
lorsque, de plus, la condition (le premier argument) est vraie.

— La troisième règle spécifie que le deuxième argument de merge doit
être présent lorsque la condition est vraie, et le troisième lorsque la
condition est fausse.

On peut illustrer la première des trois règles avec un exemple : le
programme ci-dessous est mal typé car les deux arguments de l’addition
ne sont pas présents aux mêmes instants.

node n(x : int) returns (o : int)

var h : bool;

let

programmation synchrone 23

h = true fby not h;

o = x + (x when h);

tel

(x when h) : File "badplus.ept", line 5, characters 11-19:

> o = x + (x when h);

> ^^^^^^^^

Clock Clash: this value has clock 'a on true(h),

but is expected to have clock 'a.

Pour terminer notre discussion des horloges, on peut présenter un
exemple d’utilisation moins artificiel que les précédents.

Un nœud très utile dans les programmes synchrone est l’intégrateur,
qui calcule une approximation numérique de l’intégrale de son flot
d’entrée. Le schéma d’intégration dit d’Euler explicite, implémenté dans
le nœud itgr ci-dessous, est sans doute le plus simple à programmer.

node itgr(x, h, ini : float) returns (o : float)

let

o = (ini fby o) +. h *. x;

tel

L’entrée x est le flot à intégrer, le flot ini la valeur initiale de l’inté-
grateur, et le flot h donne le pas d’intégration, qu’on peut comprendre
comme le temps physique écoulé depuis l’instant logique précédent.
Si h est suffisamment petit, les valeurs successives de y offrent de
bonnes approximations de l’intégrale de Riemann de x.

Imaginons maintenant qu’on veuille rajouter une entrée supplémen-
taire à l’intégrateur : un flot booléen en qui contrôle à quels instants x

doit être intégré. Lorsque en est faux, la sortie doit conserver la valeur
qu’elle avait à l’instant précédent. Ce type d’intégrateur est très utile.
On peut programmer cet intégrateur interruptible en combinant tous les
opérateurs vus juqu’à présent : entrelacement, sélection et opérateurs
séquentiels.

node itgr_enable(x, h, ini : float; en : bool)

returns (o : float)

var oi : float;

let

oi = itgr(x when en, h when en, ini when en);

o = merge en oi ((ini fby o) when false(en));

tel

Un point important est qu’en Heptagon, les nœuds sont automatique-
ment polymorphes vis-à-vis des horloges : on peut appliquer itgr à des
arguments sur une horloge quelconque, du moment que cette horloge
est la même pour les trois arguments.

programmation synchrone 24

Question 14. Donnez un chronogramme pour ce nœud, en prenant comme
premières valeurs : pour le flot en, les valeurs true, true, false, true, false ;
pour ini, le flot constant 0.0 ; pour h le flot constant 0.2 ; pour le flot x,
des valeurs abstraites x0, x1, x2, x3, x4.

Question 15. Que se passe-t-il si on remplace l’équation pour oi dans le
nœud itgr_enable par oi = itgr(x, h, ini) when en? Pouvez-vous
expliquer ce résultat par un chronogramme ?

Automates

Les constructions manipulant les horloges, merge et when, sont des
ingrédients essentiels aux langages comme Heptagon et SCADE. On a
toutefois vu que leur maniement requiert un certain doigté, puisqu’il
exige de comprendre un tant soit peu le fonctionnement du calcul d’hor-
loge. En pratique, les programmeurs utilisent plutôt des constructions
de contrôle, qui permettent d’activer et désactiver des blocs d’équa-
tion de diverses manières. Heptagon et SCADE réduisent ensuite ces
constructions à celles sur les horloges durant le processus de compila-
tion. Nous allons maintenant discuter de ces constructions de contrôle,
qui permettent notamment la programmation directe d’automates.

Pour notre premier exemple de construction de contrôle, nous allons
réimplémenter le nœud j, qui reconnaît le langage (ab∗c)+.

type alpha = A | B | C

node p(l : alpha) returns (accept : bool)

let

automaton

state X

do accept = false

unless l = A then Y | true then Dead

state Y

do accept = false

unless l = B then Y | l = C then Z | true then Dead

state Z

do accept = true

unless l = A then Y | true then Dead

state Dead

do accept = false

end

tel

programmation synchrone 25

Son interface n’a pas changé. En revanche, son corps n’est plus formé
directement d’un ensemble d’équations, mais d’un automate, intro-
duit par le mot-clef automaton. Un automate doit spécifier une liste
d’états, introduits par le mot-clef state, le premier d’entre eux étant par
convention l’état initial 19 de l’automate. Chaque état a un nom qui doit 19. Contrairement aux automates étudiés

dans les cours de langages formels, les
automates d’Heptagon n’ont pas à pro-
prement parler d’état final, puisqu’ils
ne reconnaissent pas un langage mais
contrôlent quelles équations sont actives
à quel instant.

commencer par une majuscule. Chaque état spécifie un bloc d’équations
après le mot-clef do, et éventuellement une liste de transitions. Seules
les équations de l’état courant de l’automate sont actives et dictent la
valeur des variables correspondantes. Par exemple, une transition

unless c1 then S1 | c2 then S2 | ... | cN then SN

spécifie que si la condition c1 s’évalue à vrai, le prochain état est S1 ;
sinon, on évalue c2, et le prochain état devient S2 si cette condition
s’évalue à vrai ; sinon, on évalue c3, et ainsi de suite. Si aucune condition
n’est vraie, on reste dans l’état courant. Il existe des transitions de
diverses sortes, que nous allons décrire tout de suite.

Transitions fortes et faibles. Comme on l’a vu, chaque état d’un automate
peut contenir plusieurs transitions de sortie, contrôlées par des condi-
tions booléennes. Dans l’exemple précédent, on a utilisé des transitions
de type unless, dites transitions fortes. Les conditions des transitions
fortes sont testées au début de l’instant courant, l’état correspondant
n’est donc pas activé si l’une d’entre elles est vraie. Ainsi, le nœud a0

ci-dessous produit le flot constant true car l’équation o = false n’est
jamais active — il entre dans l’état B au début du premier instant.

node a0() returns (o : bool)

let

automaton

state A

do o = false

unless true then B

state B

do o = true

end

tel

En plus des transitions fortes, on dispose également de transitions faibles.
Les conditions des transitions faibles sont testées à la fin de l’instant,
et déterminent donc l’état dans lequel l’automate commencera l’instant
suivant. Ainsi, le nœud a1 ci-dessous produit le flot Jfalse fby trueK,
car la condition est testée à la fin du premier instant — l’état B est donc
actif à partir du deuxième instant.

node a1() returns (o : bool)

let

programmation synchrone 26

automaton

state A

do o = false

until true then B

state B

do o = true

end

tel

Comment choisir entre transitions faibles et fortes ? Il existe une diffé-
rence importante entre ces deux types de transitions du point de vue
de la causalité. Les conditions des transitions fortes étant testées au
début de l’instant, les variables définies dans le corps de l’état sortant
dépendent instantanément de celles lues dans les conditions. Pour cette
raison, la variante des nœuds ci-dessous n’est pas causale.

node a2() returns (o : bool)

let

automaton

state A

do o = false

unless not o then B

state B

do o = true

end

tel

Dans ce programme, la définition de o dans l’état A dépend instan-
tanément de la valeur de o, puisque savoir si elle est active exige de
tester la condition not o de la transition forte, condition qui dépend
instantanément de o. Le compilateur Heptagon illustre ce fait via le
message d’erreur suivant.

Causality error: the following constraint is not causal.

^o < o || o

Ce problème ne se pose plus si l’on remplace la transition forte par une
transition faible, comme ci-dessous. La condition not o étant testée à la
fin de l’instant, la définition de o n’en dépend que de façon retardée,
et ce programme n’a pas de problème de causalité. Le résultat est
équivalent à a1.

node a3() returns (o : bool)

let

automaton

state A

do o = false

programmation synchrone 27

until not o then B

state B

do o = true

end

tel

En règle générale, les programmeurs synchrones ont tendance à
préférer par défaut les transitions faibles aux transitions fortes, puis-
qu’elles évitent d’avoir à se soucier de certaines boucles de causalité.
Il existe toutefois des programmes où il est plus commode d’utiliser
les transitions fortes, comme par exemple l’automate reconnaissant le
langage régulier (ab∗c)+.

En Heptagon, un automate ne peut effectuer qu’un seul changement
d’état par instant dans la plupart des cas : la sémantique du langage
interdit de quitter un état par une transition forte pour entrer dans un
nouvel état et en sortir immédiatement par une autre transition forte.
Par exemple, le nœud a4 ci-dessous produit le flot J2 fby 3K car l’état A
n’est jamais actif, mais qu’on ne peut pas sortir immédiatement de
l’état B par une transition forte alors qu’on vient d’y entrer au premier
instant.

node a4() returns (o : int)

let

automaton

state A

do o = 1

unless true then B

state B

do o = 2

unless true then C

state C

do o = 3

end

tel

Il existe une seule exception à cette règle, où un automate peut effectuer
deux transitions en un instant, et donc passer par un état transitoire
qui n’est jamais actif. Elle se produit lorsqu’on sort d’un état A par une
transition faible à la fin de l’instant n pour entrer à l’instant n + 1 dans
un état B qui dispose d’une transition forte dont la condition est vraie
et qui mène à un état C. Dans ce cas, les définitions de l’état B ne sont
jamais actives, et l’automate passe directement de l’état A à l’état C.

node a5() returns (o : int)

let

automaton

programmation synchrone 28

state A

do o = 1

until true then B

state B

do o = 2

unless true then C

state C

do o = 3

end

tel

Le nœud a5 ci-dessus illustre ce comportement : à la fin du premier
instant, il passe à l’état B, mais en sort au début du deuxième instant
pour entrer directement dans l’état C. Il produit donc le flot J1 fby 3K.
Programmer principalement avec des transitions faibles évite d’avoir à
se préoccuper des enchaînements faible/forte.

Transitions réinitialisantes et continuantes. Le nœud suivant comprend
un automate à deux états qui passe de l’état initial A à l’état B après
trois instants via une transition faible, avant de repasser à l’état A un
instant plus tard. Comment évolue son flot de sortie ?

node f0() returns (o : int)

let

automaton

state A

do o = 0 fby (o + 1)

until o >= 3 then B

state B

do o = 42

until true then A

end

tel

La sortie de f0 est périodique, comme le montre ce chronogramme.

o 0 1 2 3 42 0 1 2 3 42 0 1 2 3 42 . . .

Ce comportement est causé par les transitions de la forme c then S

qui, qu’elles soient faibles ou fortes, réinitialisent leur état d’arrivée.
On dit que de telles transitions sont réinitialisantes. Autrement dit, le
flot des entiers naturels définis dans l’état A est réinitialisé lors de la
transition qui y entre depuis B. De la même manière, le nœud suivant La notation uω , où u est un mot fini, dé-

signe le flot périodique formé par la ré-
pétition continuelle du mot u.

produit la suite périodique (0 1 2 3)ω.

node f1() returns (o : int)

let

programmation synchrone 29

automaton

state A

do o = 0 fby (o + 1)

until o >= 3 then A

end

tel

Le fait qu’un état soit réinitialisé est un comportement souvent com-
mode lors de l’écriture d’un programme réactif. Il permet de com-
prendre l’évolution d’un état S en isolation des autres, sans avoir à
considérer les transitions qui mènent à S. Cependant, il est parfois
commode de ne pas réinitialiser un état. Pour cette raison, Heptagon
offre un autre type de transition, les transitions continuantes. Celles-ci,
notées c continue S, permettent d’entrer dans l’état S sans le réinitia-
liser. Elles peuvent être fortes ou faibles, tout comme les transitions
réinitialisantes.

Question 16. Quel est le flot produit par le nœud f2 ci-dessous ?

node f2() returns (o : int)

let

automaton

state A

do o = 0 fby (o + 1)

until o >= 3 then B

state B

do o = 42

until true continue A

end

tel

Question 17. Comment simplifier le nœud f3 ci-dessous ?

node f3() returns (o : int)

let

automaton

state A

do o = 0 fby (o + 1)

until o >= 3 continue A

end

tel

Mémoire partagée. Les constructions relatives aux automates vues jus-
qu’ici permettent de programmer rapidement des structures de contrôle
complexes. Il leur manque toutefois un ingrédient essentiel. Pour s’en
convaincre, essayez d’implémenter la spécification suivante.

−10 +10
0

b s o

Figure 13: interface du nœud switch3.

programmation synchrone 30

Question 18. Programmez un nœud Heptagon switch3 ayant :

— une entrée booléenne b représentant les pressions sur un bouton de com-
mande ;

— une entrée entière s représentant la position d’un curseur, qu’on supposera
comprise entre −10 et 10 ;

— une sortie entière o, initialisée à 0, qu’on imaginera affichée sur un écran.

La figure 13 présente une vision figurative d’une hypothétique interface gra-
phique comprenant bouton, curseur, et afficheur. De plus, le nœud switch3

doit obéir à la spécification suivante :

— il commence son exécution dans un état où o n’évolue pas ;

— après une pression sur le bouton de commande, il passe dans un état où o

est incrémenté de la position courante du curseur ;

— après une nouvelle pression sur le bouton de commande, il passe dans un
état où o est multiplié par la position courante du curseur ;

— Enfin, une dernière pression le ramène dans l’état initial.

On pourrait essayer de programmer un tel automate avec trois états
connectés par des transitions continuantes, comme suit.

node switch3bad(b : bool; s : int) returns (o : int)

let

automaton

state Idle

do o = 0 -> pre o

unless b continue Increment

state Increment

do o = (0 -> pre o) + s

unless b continue Multiply

state Multiply

do o = (0 -> pre o) * s

unless b continue Idle

end;

tel

Toutefois, le comportement de cet automate n’est pas le bon, comme en
témoigne le chronogramme ci-dessous.

b 1 0 0 1 0 1 0 1 0 0 0 1 0 0 . . .
s 1 2 3 1 5 5 2 2 1 1 2 2 0 5 . . .
o 1 3 6 0 0 0 0 8 9 10 12 0 0 0 . . .

Ce chronogramme montre que l’opérateur pre o, utilisé dans un état S,
fait référence à la valeur de o à son instant de définition précédent, c’est
à dire, à l’instant d’activation précédent de S. Autrement dit, toutes les

programmation synchrone 31

définitions de o sont purement locales à chaque état, et peuvent être
considérées indépendamment.

Cependant, pour respecter notre spécification, nous voudrions plutôt
que la sortie o soit une mémoire partagée globalement entre les différents
états de l’automate. On peut obtenir un tel comportement via le mot-
clef last. Celui-ci, utilisé dans une déclaration de variable, permet de
faire de celle-ci une mémoire partagée. Utilisé dans une expression, il
permet d’accéder à la valeur d’une mémoire à l’instant précédent 20. 20. Il est interdit d’utiliser last sur une

variable qui n’a pas été déclarée comme
étant une mémoire.

De plus, une mémoire peut être initialisée, auquel cas elle n’a pas à
recevoir de définition dans tous les états de l’automate — elle conserve
implicitement sa valeur précédente en l’absence de définition.

En faisant de la sortie o une mémoire partagée, on peut réécrire
l’exemple précédent comme suit.

node switch3(b : bool; s : int) returns (last o : int = 0)

let

automaton

state Idle

do

unless b then Increment

state Increment

do o = last o + s

unless b then Multiply

state Multiply

do o = last o * s

unless b then Idle

end

tel

On obtient alors le chronogramme ci-dessous.

b 1 0 0 1 0 1 0 1 0 0 0 1 0 0 . . .
s 1 2 3 1 5 5 2 2 1 1 2 2 0 5 . . .
o 1 3 6 6 30 30 30 32 33 34 36 72 0 0 . . .

En effet, la valeur last o lue dans l’état Increment est bien la der-
nière définie dans n’importe lequel des états de l’automate, y compris
dans Multiply, et similairement pour la valeur lue dans l’état Multiply.

programmation synchrone 32

type color = Green | Amber | Cyan

fun color2rgb(c : color)

returns (r, g, b : float)

let

switch c

| Green

do r = 0.0; g = 1.0; b = 0.0;

| Amber

do r = 1.0; g = 0.75; b = 0.0;

| Cyan

do r = 0.0; g = 1.0; b = 1.0;

end

tel
fun sign(x : float)

returns (o : float)

let

present

| x >. 0.0 do o = 1.0

| x <. 0.0 do o = -.1.0

default do o = 0.0

end

tel

Autres constructions de contrôle. En plus des automates, Heptagon
dispose de quelques autres constructions de contrôle plus légères, plus
simples à utiliser lorsqu’un automate général n’est pas nécessaire.

— La construction if/then/else permet de sélectionner en fonction
d’un condition booléenne lequel de deux blocs activer.

— La construction switch généralise la précédente en permettant d’ac-
tiver un bloc d’équations selon la valeur d’un flot énuméré.

— Enfin, la construction present généralise la construction switch en
permettant de sélectionner la branche à activer en fonction d’une
série de conditions booléennes testées successivement. On peut éven-
tuellement spécifier un bloc à activer lorsque toutes les conditions
sont fausses via le mot-clef default.

Dans les trois constructions ci-dessus, les flots permettant la sélection
du bloc d’équations doivent être calculés par des expressions combina-
toires. Cette condition est vérifiée par le compilateur Heptagon.

Tableaux et itérateurs

En plus des enregistrements, Heptagon offre un autre type de don-
nées : les tableaux, c’est-à-dire des séquences finies d’éléments de même
type. Ceux-ci fonctionnent largement comme les tableaux des langages
fonctionnels. On va maintenant détailler les constructions relatives aux
tableaux, en commençant par les plus simples.

Types tableaux. Comme dans la plupart des langages de programma-
tion typés, les tableaux d’Heptagon sont homogènes : ils contiennent
des éléments du même type. Contrairement à un langage comme Java
ou OCaml, ils sont d’une taille fixée à la compilation. Cette taille doit
être spécifiée par une expression statique, c’est à dire une expression dont
la valeur peut être calculée à la compilation — on décrira le fonctionne-
ment de ces expressions plus loin dans cette section. La notation est t^s,
où t est un type et s une expression statique, désigne les tableaux de
type t de taille s. Comme tous les types d’Heptagon, ce type désigne
en réalité un flot, flot qui transporte des tableaux. Ainsi, le type int^10

désigne les flots de tableaux de taille 10 d’entiers, le type float^15^30

désigne les flots de tableaux de taille 30 de tableaux de taille 15 de
nombres flottants.

Constructions de base. La façon la plus simple de créer un nouveau
tableau est de spécifier chacun de ses éléments. Le littéral [e1, e2, . . . , es]

désigne le flot de tableau de taille s dont les éléments sont calculées
par les expressions ei, qui doivent par conséquent toutes avoir le même

programmation synchrone 33

type. Si tous les éléments du tableau sont les mêmes, on peut écrire à
la place e^n, raccourci pour [e, . . . , e] où e apparaît n fois. o1 [1, 2, 3] [1, 2, 3] . . .

o2 [42, 42, 42] [42, 42, 42] . . .
o3 [1, 2, 3] [42, 42, 42] . . .node arr0() returns (o1, o2, o3 : int^3)

let

o1 = [1, 2, 3];

o2 = 42^3;

o3 = o1 fby o2;

tel

Le nœud ci-dessus produit trois sorties, toutes trois des flots de ta-
bleaux d’entiers de taille 3. Les deux premières sont des flots constants,
contrairement au troisième. Le nœud ci-dessous donne un exemple plus
intéressant de flot de tableaux qui évolue au cours du temps. Le n-ème
tableau transporté par le flot o est [n, n + 1]. n 0 2 4 . . .

o [0, 1] [2, 3] [4, 5] . . .

node arr1() returns (o : int^2)

var n : int;

let

n = 0 fby (n + 2);

o = [n, n + 1];

tel

Comme la plupart des langages de programmation, Heptagon per-
met l’accès indicé au contenu d’un tableau. Le langage étant dédié
aux systèmes critiques, l’accès indicé y est plus rigide que dans des
langages généralistes où un accès en dehors des bornes du tableau peut
être détecté dynamiquement. On va tout d’abord voir les méthodes
d’accès indicé les plus restrictives et sûres, avant d’aborder les autres.

L’expression a[i], où a est une expression de type tableau t^n

et i une expression statique, désigne le contenu de la i-ème case du
tableau a. L’expression i étant statique, le compilateur Heptagon peut
vérifier statiquement que son résultat appartient bien à l’intervalle [0, n[.

Bien que limités, les accès indicés constants permettent déjà d’écrire
des nœuds intéressants. Par exemple, un registre à décalage stocke un
nombre codé sur n bits, et produit périodiquement les bits de n, du bit
de poids le plus fort au bit de poids le plus faible. Le nœud ci-dessous
implémente un registre à décalage sur trois bits qui passe au bit suivant
lorsque son entrée sh est vraie. L’entrée ini fournit l’entier à stocker
initialement — sous sa forme de tableau de bits.

node shiftr3(ini : bool^3; sh : bool) returns (o : bool)

var mem, nxt : bool^3;

let

mem = ini fby nxt;

nxt = if sh then [mem[2], mem[0], mem[1]] else mem;

programmation synchrone 34

o = nxt[2];

tel

Si le flot ini vaut [true, false, true] au premier instant, on peut
obtenir par exemple le chronogramme suivant.

sh 0 1 0 0 1 1 . . .
mem [1, 0, 1] [1, 0, 1] [1, 1, 0] [1, 1, 0] [1, 1, 0] [0, 1, 1] . . .
nxt [1, 0, 1] [1, 1, 0] [1, 1, 0] [1, 1, 0] [0, 1, 1] [1, 0, 1] . . .
o 1 0 0 0 1 1 . . .

Question 19. Pouvez-vous réimplémenter le nœud shiftr3 en remplaçant
les variables mem et nxt, de type bool^3 par des variables de type bool?

Heptagon permet aussi d’accéder à une cellule d’un tableau dont
l’indice a été spécifié par une expression dont la valeur n’est pas connue
avant l’exécution. Le compilateur ne pouvant pas vérifier que cet accès
est sûr à la compilation, cette construction exige de fournir une valeur
par défaut qui sera utilisée en cas d’accès hors des bornes du tableau.
On écrit a.[e] default d pour signifier qu’on veut accéder à la case
d’indice JeK du tableau JaK, avec JdK la valeur à utiliser si JeK n’est pas
comprise entre 0 et s − 1, avec s la taille de a. Plus formellement,

Ja.[e] default dKn =

{
JaKn[JeKn] si 0 ≤ JeKn < s
JdKn sinon.

Une autre possibilité, plus rarement utilisée, est de tronquer le résultat
de l’expression calculant l’indice pour le ramener dans les bornes du
tableau. Cette construction s’écrit a[>e<], et sa sémantique est

Ja[>e<]Kn = JaKn[min(max(JeKn, 0), s − 1)].

Enfin, on peut également lire une tranche de tableau, c’est à dire un sous-
tableau formé d’un nombre contigu de cellules. La tranche a[lo .. hi]

doit être définie par deux expressions statiques lo et hi, de sorte à
ce que la taille hi - lo + 1 du sous-tableau lu soit calculable à la
compilation.

En plus de lire les cellules d’un tableau, on peut également modi-
fier ses cellules. Heptagon étant un langage fonctionnel, cette mo-
dification résulte en un nouveau tableau, laissant l’original intact.
Ainsi, [t with [e] = v] construit à l’instant n un nouveau tableau
identique à t à l’exception de la cellule d’indice JeKn dont la valeur est
remplacée par JvKn. Si JeKn est en dehors des bornes du tableau JaKn, la
modification n’a pas lieu et le résultat est identique à JaKn.

0

1

2

3

4

5

6

7

8

9

Buffer circulaire
(n = 10)

r_idx

w_idx

5

12
9

8

00

0

0
0

0

Figure 14: buffer circulaire à l’instant 5.

À l’aide de ces constructions, on peut écrire par exemple un buffer
circulaire stockant des entiers. Un buffer circulaire est un composant
mémorisant d’une taille fixée, disons n, qui enregistre les éléments d’un

programmation synchrone 35

flot d’entiers pour les produire à un instant ultérieur. Celui que nous
allons programmer dispose de trois entrées et d’une sortie.

— L’entrée e fournit un flot d’entiers dont l’élement courant doit être
stocké lorsque l’entrée booléenne w est vraie.

— L’entrée booléenne r indique si la prochaine valeur du buffer a été
consommée dans la sortie o.

En particulier, la valeur de l’entrée e n’est pertinente que lorsque w est
vrai, et similairement pour o et r.

const n : int = 10

node ring_buffer(e : int; w, r : bool) returns (o : int)

var r_idx, w_idx : int; pa, a : int^n;

let

o = a.[r_idx] default 0;

pa = (0^n) fby a;

a = if w then [pa with [w_idx] = e] else pa;

r_idx = 0 fby (((if r then 1 else 0) + r_idx) % n);

w_idx = 0 fby (((if w then 1 else 0) + w_idx) % n);

tel

Le code ci-dessus implémente un tel buffer circulaire en utilisant deux
flots d’entiers, w_idx et r_idx, qui contiennent respectivement les pro-
chains indices auxquels écrire et lire. Le flot de tableaux a transporte le
contenu stocké par le buffer.

e 5 12 10 9 8 7 1 3 . . .
w true true false true true false true false . . .
r false false true false true false true true . . .
o 5 5 5 12 12 9 9 8 . . .

La figure 14 représente le contenu du buffer au cinquième instant, ainsi
que les indices d’écriture et lecture. On a verdi les cases contenant des
valeurs stockées depuis le début de l’exécution.

Question 20. Écrivez une variante ring_buffer_clocked en utilisant les
horloges pour spécifier que l’entrée e n’est présente que lorsque le flot w vaut
vrai, tandis que la sortie o n’est présente que lorsque le flot r vaut vrai.

Question 21 (Plus difficile). Écrivez une variante ring_buffer_checked
dotée d’une sortie supplémentaire err qui est vraie lorsque r est vrai mais
qu’il n’y a rien à lire, ou bien lorsque w est vrai mais qu’il n’y a plus d’espace
pour écrire.

Une dernière construction élémentaire de manipulation de tableaux
est la concaténation, notée a1 @ a2, qui résulte en un tableau dont la
taille est la somme des tailles de a1 et de a2.

programmation synchrone 36

Expressions et paramètres statiques. Dans l’exemple du buffer circulaire
donné précédemment, la taille du tableau interne est dictée par la
valeur d’une constante n déclarée au début du fichier. Avoir isolé cette
constante de la sorte permet de changer très facilement la taille du
tableau. Néanmoins, cette solution reste peu satisfaisante, puisqu’elle
ne permet pas d’utiliser des buffers circulaires de tailles différentes
dans un même programme, à moins de copier-coller le code.

Pour pallier ce défaut, Heptagon permet de déclarer des paramètres
statiques, qui sont des paramètres inconnus mais dont la valeur doit être
fixée à la compilation. Ils sont introduits entre double chevrons, avant
les paramètres normaux du nœud, comme dans la variante paramétrée
du buffer circulaire qui suit.

node ring_buffer<<n : int>>(e : int; w, r : bool)

returns (o : int)

var r_idx, w_idx : int; pa, a : int^n;

let

o = a.[r_idx] default 0;

pa = (0^n) fby a;

a = if w then [pa with [w_idx] = e] else pa;

r_idx = 0 fby (((if r then 1 else 0) + r_idx) % n);

w_idx = 0 fby (((if w then 1 else 0) + w_idx) % n);

tel

Lors d’un appel, la liste des arguments statiques doit être fournie entre
double chevrons également, avant les arguments normaux. Ainsi, le
code ci-dessous appelle deux fois le buffer circulaire, chaque fois avec
une taille différente.

node test_buffer() returns (r1 : bool; o1 : int;

r2 : bool; o2 : int)

var e : int; w : bool;

let

e = 0 fby (e + 1);

w = true fby true fby false fby false fby w;

r1 = false fby false fby true fby true fby r1;

o1 = ring_buffer<<2>>(e, w, r1);

r2 = true fby false fby r2;

o2 = ring_buffer<<1>>(e, w, r2);

tel

Question 22. Donnez un chronogramme pour le nœud test_buffer. Que
se passe-t-il si on passe l’argument statique 1 au buffer dont la sortie est o1?

Les expressions statiques sont celles qui apparaîssent dans les tailles
des tableaux, dans les accès indicés statiques, ou encore comme ar-
guments des nœuds disposant de paramètres statiques. Elles peuvent

programmation synchrone 37

faire référence aux constantes globales (comme n dans la première
implémentation du buffer circulaire), ou bien aux paramètres statiques
du nœud courant (comme dans le code ci-dessus). Elles peuvent utiliser
la plupart des opérateurs combinatoires d’Heptagon, notamment les
opérateurs arithmétiques. Il est ainsi possible de déclarer une variable
de type int^(n + 1) où n est une constante statique. En revanche, les
opérateurs séquentiels comme fby ne sont pas autorisés.

t = map<<n>> f(e)

f . . . f

e[0] e[n − 1]

t[0] t[n − 1]

i o

o = fold<<n>> f(e, i)

f . . . f

e[0] e1[n − 1]

i o

(t, o) = mapfold<<n>> f(e, i)

f . . . f

e[0] e[n − 1]

t[0] t[n − 1]

i o

Figure 15: trois principaux itérateurs.

Itérateurs. Les constructions sur les tableaux vues jusqu’à présent
ne permettent que d’accéder à un nombre fixé de cases d’un tableau.
Par exemple, nous ne pouvons pas exprimer un registre à décalage
générique qui fonctionnerait pour toute taille de tableau. Heptagon
propose sous le nom d’itérateurs des constructions pour parcourir les
cases d’un tableau en effectuant divers traitement. Elles constituent des
variantes des fonctions d’ordre supérieur classiques sur les séquences
bien connues par les amateurs de langages fonctionnels. On va décrire
les principaux itérateurs, en associant à chacun sa règle de typage.

— La construction map<<n>> prend une fonction f recevant k entrées et
produisant l sorties, et applique indépendamment f aux n éléments
de k tableaux pour obtenir n éléments de l tableaux en sortie.

f : a1 × · · · × ak → b1 × · · · × bl e1 : a1^n . . . ek : ak^n

map<<n>> f(e1, . . . , ek) : b1^n × · · · × bl^n

— La construction fold<<n>> prend une fonction f recevant k + 1
entrées et produisant une sortie, et l’applique successivement aux
éléments de k tableaux de taille n.

f : a1 × · · · × ak × c → c

e1 : a1^n . . . ek : ak^n i : c

fold<<n>> f(e1, . . . , ek, i) : c

— La construction mapfold<<n>> prend une fonction f recevant k + 1
entrées et produisant l + 1 sorties. Elle combine les deux construc-
tions précédentes.

f : a1 × · · · × ak × c → b1 × · · · × bl × c

e1 : a1^n . . . ek : ak^n i : c

mapfold<<n>> f(e1, . . . , ek, i) : b1^n × · · · × bl^n × c

La figure 15 représente graphiquement le fonctionnement de ces trois
itérateurs. Pour éviter de surcharger visuellement cette figure, on a
choisi de ne représenter que le cas où k = l = 1.

En plus des itérateurs map, fold et mapfold, Heptagon propose des
variantes qui recoivent un argument supplémentaire correspondant à

programmation synchrone 38

l’indice courant dans le tableau. Ces variantes, mapi, foldi et mapfoldi,
peuvent être programmées en fonctions des précédentes mais sont
si utiles qu’elles sont intégrées au langage. Nous vous renvoyons au
manuel d’Heptagon pour plus de détails.

À l’aide des itérateurs, on peut finalement programmer un registre
à décalage générique en la taille du tableau à mémoriser. Le code est
donné ci-dessous. Il utilise une fonction auxiliaire shiftr_aux pour
implémenter le décalage.

fun shiftr_aux(a, acc : bool) returns (b, newacc : bool)

let

b = acc;

newacc = a;

tel

node shiftr<<n : int>>(ini : bool^n; sh : bool)

returns (o : bool)

var mem, nxt, sft : bool^n; d : bool;

let

mem = ini fby nxt;

(sft, d) = mapfold<<n>> shiftr_aux(mem, mem[n-1]);

nxt = if sh then sft else mem;

o = nxt[n-1];

tel

Question 23. À quoi ressemble la représentation de mapfold donnée à la fi-
gure 15 lorsque vous remplacez f par le corps de shiftr_aux?

Optimisations sur les tableaux. Les tableaux d’Heptagon sont persistants,
c’est à dire qu’ils fabriquent de nouvelles valeurs sans modifier les
tableaux existants. Cette propriété rend leur comportement facile à
décrire mathématiquement ainsi qu’à comprendre. En revanche, cela
signifie qu’une implémentation naïve est assez coûteuse. Par exemple,
toute opération de modification de tableau [t with [i] = e] doit
commencer par copier le tableau t, avant de modifier la case d’indice i

de la copie. Le compilateur Heptagon emploie diverses optimisations
pour minimiser le nombre de copies. Il essaie également de fusionner Pour en savoir plus, référez vous à l’ar-

ticle de Gérard, Guatto, Pasteur et Pou-
zet [7] au sujet de l’ajout de l’intégration
des tableaux à un langage synchrone.

les itérateurs imbriqués de sorte à minimiser le nombre de parcours de
chaque tableau et à éliminer les tableaux intermédiaires. Par exemple,
lorsque map<<n>> f est appliqué à map<<n>> g, le compilateur construit
une fonction h qui associe f(g(x)) à x, et remplace les map imbriqués
par map<<n>> h. Cette transformation, l’élimination de copie, et d’autres
optimisations encore sont activées en passant l’option -O à heptc.

programmation synchrone 39

Applications

Programmation audio en temps-réel

La programmation audio en temps-réel produit et traite des flots
d’échantillons sonores à une fréquence relativement élevé (44.1 kHz).
Il se trouve que certains de ces traitements s’écrivent assez facilement
dans un langage synchrone tel qu’Heptagon. Le sous-dossier audio/

contient un exemple d’un tel programme écrit en Heptagon.

Contrôle d’un pendule inversé

Procédé

ContrôleurC
om

m
an

de M
esure

Consigne

Figure 16: problème de contrôle.

Comme on l’a vu, la plupart des applications des langages syn-
chrones vont chercher à contrôler des systèmes réactifs, en mettant en
jeu des techniques issues de l’automatique. Un problème de contrôle
se présente abstraitement comme à la figure 16. Il met en un jeu deux
acteurs, un contrôleur et un procédé. Le contrôleur observe le procédé
en recueillant une certaine mesure ; son objectif est de faire en sorte
que cette mesure soit égale à une certaine consigne. Autrement dit, le
contrôleur cherche à réduire l’erreur, c’est-à-dire la distance entre la
mesure et la consigne, à zéro. Pour ce faire, il agit sur le procédé en
fixant une commande.

ℓ

m

θ

x0

Figure 17: pendule inversé.

Cette description abstraite s’applique s’applique à un grand nombre
de situations. On va s’intéresser à une situation classique en automa-
tique, le contrôle d’un pendule inversé. Dans cette situation, le contrô-
leur cherche à maintenir à la verticale un bras à l’extrémité supérieure
duquel repose une boule. L’autre extrémité est articulée à une base
que le contrôleur peut déplacer le long d’un axe horizontal. Dans les
termes abstraits donnés plus haut, le contrôleur mesure l’angle entre le
bras et la verticale parfaite, et il commande l’accélération de la base. La
consigne est l’angle souhaité, c’est-à-dire 0 ici.

On va implémenter plusieurs programmes synchrones qui per-
mettent le contrôle du pendule inversé, mais aussi réaliser un modèle
numérique de l’environnement, c’est-à-dire du pendule lui-même. Pour
cela, il faut nous livrer à un petit exercice de modélisation.

L’état du système est décrit par le quadruplet (m, ℓ, θ, x0) où m
désigne la masse m de la boule à l’extrémité du bras, ℓ la longueur du
bras, θ l’angle entre le bras et la verticale, et x0 la position de la base
sur l’axe horizontal. On se place dans un système idéalisé où le bras et
la base sont de masses nulles. On peut dériver des lois de la mécanique
et d’un peu de trigonométrie que les états du système physiquement
valides satisfont l’équation différentielle

ℓ
d2θ

dt2 − mg sin θ =
d2x0

dt2 cos θ

programmation synchrone 40

où g désigne la constante gravitationnelle et t est la variable du temps.
Pour simuler ce système dans un contexte où x0 est commandé par le
contrôleur, on doit calculer l’évolution de l’angle. Il nous faut donc ré-
soudre cette équation pour trouver θ, ce qui mène à l’équation suivante.

d2θ

dt2 =

(
d2x0

dt2 cos θ + mg sin θ

)
/ℓ

Plutôt que de résoudre celle-ci symboliquement, on va approximer
numériquement ses solutions. Il s’agit d’un vaste sujet qui relève des
mathématiques appliquées, plus spécifiquement de l’analyse numé-
rique. Dans notre cas, on peut simplement réutiliser l’intégrateur vu au
début du cours pour obtenir un nœud capable de simuler le système.

node pendulum(m, d2x0, dt : float) returns (theta : float)

var thetap, d2theta : float;

let

thetap = 0.0 fby theta;

d2theta = (d2x0 *. cos(thetap)

+. m *. g *. sin(thetap)) /. l;

theta = itgr(0.0, dt, itgr(0.0, dt, d2theta));

tel

Le simulateur que nous allons réaliser va être un simulateur dit à pas
fixe, où à chaque instant logique va correspondre une quantité fixe de
temps physique. Cette quantité est précisément la suite constante dt

que l’on passera à au nœud ci-dessus.
Il reste maintenant à concevoir le contrôleur qui va tâcher de mainte-

nir le pendule inversé à l’équilibre. Il s’agit d’un problème très classique
en automatique, dont on va décrire très brièvement deux approches
très simples : le contrôle dit bang-bang et le contrôle dit proportionnel-
intégral-dérivé, ou PID. Ces contrôleurs sont génériques, au sens où ils
s’appliquent à une foule de situations. Ces contrôleurs sont réglables
via divers paramètres qui seront à adapter à la dite situation. Le code
fourni avec le cours vous donne une version simple de chacun d’entre
eux.

Un contrôleur bang-bang va réagir de façon discrète à l’erreur. Dans
le cas du pendule inversé, on peut par exemple décider de déplacer
le mobile vers la droite à une vitesse fixe lorsque l’angle θ devient
strictement positif, et vers la gauche lorsqu’il devient négatif. Ce type
de contrôleur est très simple mais introduit facilement des oscillations.

Un contrôleur proportionnel-intégral-dérivé agit en fonction de l’erreur,
typiquement définie comme la différence entre la mesure et la consigne.
Il prend en compte la magnitude courrante de cette erreur (action pro-
portionnelle), mais aussi la quantité d’erreur accumulée au cours du
temps (action intégrale), ainsi que l’intensité de variation de l’erreur (ac-

programmation synchrone 41

tion dérivée). L’influence de ces trois actions est modérée par un coeffi-
cient appelé gain.

programmation synchrone 42

Compilation des langages synchrones à flots de données

Introduction

Le but de la dernière partie de ces notes est de vous fournir une in-
troduction à la compilation des langages synchrones à flots de données
tels que SCADE et Heptagon. Le développement de ces techniques a
connu deux grandes périodes.

Compilation en automate. Des années 1980 jusqu’à la fin des années 1990,
les compilateurs ont majoritairement reposé sur la théorie des au-
tomates. Il s’agit de construire explicitement l’automate fini qui est
décrit par un programme synchrone. Cet automate peut ensuite être
transformé en profondeur, par exemple subir une minimisation.

Compilation guidée par les horloges. Depuis le début des années 2000, la
compilation des langages synchrones à flots de donnée s’est rappro-
chée de celle des langages plus classiques. Plutôt que de générer
un automate explicite, on traduit progressivement le code source
vers du code impératif qui implémente l’automate implicitement.
Cette traduction exploite l’information d’horloge pour optimiser la
structure de contrôle du code généré.

Ces deux familles d’approches partagent le même point d’arrivée :
le compilateur synchrone produit un code source en C. Celui-ci peut
ensuite être lui-même transformé en exécutable par la chaîne de compi-
lation standard de la plateforme cible.

Dans cette partie du cours, nous allons discuter uniquement des
techniques de compilation guidées par les horloges 21. Si elles ont ten- 21. Le lecteur intéressé par la compilation

en automate pourra consulter l’article de
Halbwachs et al. [8].

dance à générer du code moins performant que les méthodes à base
d’automate, elles sont capables de compiler chaque sous-programmes
indépendamment, et peuvent donc traiter des programmes de taille
arbitrairement grande. De plus, elles s’étendent naturellement à des
langages plus expressifs que Lustre. Ces raisons ont mené à l’adop-
tion de la génération de code guidée par les horloges dans la plupart
des compilateurs actuels, dont le compilateur industriel SCADE et le
compilateur Heptagon.

Heptagon

MiniLS

Obc

parsing data typing

caus. analysis init. analysis

automata control

optim. clock typing

normalization scheduling

write C optim.

Figure 18: flot de compilation d’heptc.

Pour étudier les grandes étapes de la compilation des langages syn-
chrones, nous allons nous intéresser à un compilateur existant. Le com-
pilateur Heptagon est un choix naturel puisqu’il s’agit d’un logiciel libre
dont le code source est librement consultable et modifiable. Comme
tous les compilateurs modernes, il décompose la traduction d’un fichier
source en fichier cible (ici, du code C) en plusieurs passes de compilation.
De plus, il emploie un certain nombre de langages intermédiaires, c’est-à-
dire de langages spécialisés qui facilitent l’implémentation de certaines
analyses et transformation.

Une version simplifiée des différentes passes et langages intermé-

programmation synchrone 43

diaires du compilateur Heptagon est présentée à la figure 18. Les trois
langages connus du compilateur sont le langage source (Heptagon), un
langage intermédiaire sans structure de contrôle (MiniLS) et un langage
intermédiaire impératif (Obc). Le processus de compilation se découpe
en trois phases schématiques.

1. Le code source Heptagon est soumis à plusieurs analyses statiques
légères qui assurent l’absence de certaines erreurs à l’exécutions (data
typing, causality analysis et initialization analysis).

2. Il est ensuite transformé de sorte à éliminer les structures de contrôle,
les automates au premier titre (automata, control). Le code qui en
résulte est traduit en MiniLS, un langage purement équationnel, sans
aucune construction de contrôle.

3. Le compilateur calcul un ordre total entre les équations qui forment
le code MiniLS. Cet ordre doit respecter les dépendances et permet
de voir chaque équation comme une instruction qui modifie l’état
courant (scheduling). Les équations peuvent ensuite être traduites
vers du code impératif implémentant une fonction de transition.

En plus de ces étapes essentielles, le compilateur Heptagon applique
un certain nombre d’optimisations pour améliorer la taille du code
généré, sa performance ou l’espace requis (optim). Toutes ces étapes de
traduction sont appliquées à chaque nœud indépendamment.

Le reste de cette section sera consacrée à décrire chaque étape du
processus de traduction. Plutôt que de partir du langage source pour
arriver au code final, nous allons plutôt procéder en arrière : on va
d’abord expliquer la traduction de MiniLS vers du code impératif, avant
de détailler l’élimination des structures de contrôle d’Heptagon, et finir
avec les analyses statiques appliquées au code source. En d’autres
termes, on va parcourir la figure 18 de bas en haut.

Plusieurs constructions et traits d’Heptagon que nous avons utilisés
dans les sections précédentes ne vont pas être traités. Par exemple, nous
ne discuterons pas des constructions liées aux tableaux, y compris les
itérateurs. Nous ne traiterons pas non plus des paramètres statiques.
Enfin, nous ne couvrirons pas les optimisations utilisées par heptc,
bien que certaines d’entre elles soient assez importantes en pratique
— notamment l’élimination des copies de tableaux superflues.

De MiniLS à Obc

Mémoires. Le langage intermédiaire MiniLS peut être vu comme un
fragment d’Heptagon. Ce fragment est purement équationnel, au sens
où on n’y trouve aucune construction de contrôle de haut niveau : pas
d’automates, de switch, de present, ou de if sur les équations. Les
variables last sont également absentes. En revanche, il dispose toujours

programmation synchrone 44

de when et merge, ainsi que de fby. La construction reset est toujours
présente, mais elle ne peut s’appliquer qu’à une application de fonction,
c’est-à-dire qu’elle est restreinte à la forme reset f (e1, . . . , en) every x.

Comme premier exemple de l’effet du processus de compilation de
MiniLS, revenons à un de nos premiers exemples, celui du flot des
entiers naturels. Il se trouve être écrit directement dans le fragment
d’Heptagon qui correspond à MiniLS, c’est à dire qu’il ne contient pas
de structure de contrôle.

(* Code source en Heptagon/MiniLS. *)

node c0() returns (nat : int)

let

nat = 0 fby (nat + 1);

tel

Les passes de compilation qui traitent les structures de contrôle (en bleu
à la figure 18) sont ici sans effet. Intéressons nous plutôt aux passes en
rouge. Le calcul d’horloges est également sans effet, puisque ce nœud
ne contient ni when, ni merge, et n’appelle aucun nœud qui contiendrait
ces constructions. La première passe intéressante est la normalisation.
Celle-ci fait en sorte que certaines constructions, notamment fby, soient
dans leur propre équation, en leur attribuant un nom (ici m_nat).

(* Code MiniLS normalisé. *)

node c0() returns (nat : int)

var m_nat : int; v : int;

let

v = (nat + 1);

m_nat = 0 fby v;

nat = m_nat

tel

Une fois la normalisation effectuée, le code impératif est à portée de vue.
En effet, chaque nom défini comme le résultat d’une expression fby

va correspondre à une variable d’état qui devra persister entre chaque
réaction, à l’inverse des autres variables, purement locales. Toutefois, il
reste à décider de l’ordre dans lequel les calculs doivent être effectués.
C’est le rôle de la passe d’ordonnancement, qui produit le code suivant.

(* Code MiniLS ordonnancé. *)

node c0() returns (nat : int)

var m_nat : int; v : int;

let

nat = m_nat;

v = (nat + 1);

m_nat = 0 fby v;

tel

programmation synchrone 45

On voit que le code ordonnancé est une permutation du code normalisé.
Formellement, la normalisation calcule un ordre strict et total < entre
équations qui est compatible avec les dépendances. Tâchons de rendre
cette définition plus précise.

On note D(E) et R(E) l’ensemble des variables définies et lues, res-
pectivement, par l’équation E. Si E1 et E2 sont deux équations telles
que R(E1) ∩ D(E2) ̸= ∅, autrement dit telles que E1 lit une variable dé-
finie par E2, alors E1 doit avoir lieu après E2, sauf si E2 est un délai (fby
ou pre), auquel cas E1 doit avoir lieu avant E2.

Le choix de placer les équations qui lisent une variable définie par
un délai, comme m_nat dans l’exemple précédent, avant l’équation
définissant cette variable reflète le fonctionnement du code impératif
généré. Dans l’exemple, l’élément courant du flot m_nat va être stocké
dans un champ dédié de la structure d’état du nœud. Le calcul de m_nat

à l’instant k va modifier en place cet état pour qu’à la fin de l’exécution,
le champ corresondant à m_nat contienne la valeur attendue pour
l’instant k + 1. Il faut donc que les équations lisant m_nat, qui doivent
lire la valeur correspondant à l’instant k, aient lu la valeur avant cette
mise à jour.

Ce fonctionnement est derrière le langage intermédiaire Obc, qui est
bien un langage impératif où chaque nœud c0 se voit traduit en un
“objet” 22 modifiable appelé machine. 22. Si la terminologie vient de la program-

mation orientée objet, celle-ci reste techni-
quement assez lointaine : pas d’héritage
ou de liaison tardive ici.

-- Code impératif dans le langage Obc.

machine c0 =

var m_nat: int;

reset() returns () {

mem(m_nat) = 0

}

step() returns (nat: int) {

var v: int;

nat = mem(m_nat);

v = ((+) nat 1);

mem(m_nat) = v

}

Un programme Obc est donc constitué par un ensemble de machines.
Chaque machine spécifie un ensemble de mémoires, une méthode step

et une méthode reset. Les mémoires correspondent aux équations
MiniLS qui définissaient des délais. Le corps de la méthode reset

réinitialise les variables d’instances, en y écrivant les valeurs initiales
des délais. Le corps de la méthode step calcule les sorties en fonction
des entrées (c0 n’en a pas) et de la valeur courante des mémoires, et met

programmation synchrone 46

à jour celles-ci. Ce corps est formé d’une séquence d’instructions qui
correspondent directement aux équations du code MiniLS ordonnancé.

Obc étant un langage impératif très simple, il peut facilement être
traduit vers toutes sortes de langages : C, Javascript, OCaml, Ada,
etc. Le compilateur Heptagon effectue encore quelques optimisations
sur Obc. Une fois ceci-fait, il ne reste essentiellement qu’à afficher les
constructions d’Obc dans la syntaxe du langage cible. À titre d’exemple,
le code C ci-dessous est le produit final de la compilation. Les mémoires
de la machine ont été placées dans une structure dédiée, tout comme
ses sorties.

/* Code C final. */

typedef struct c0_mem {

int m_nat;

} c0_mem;

typedef struct c0_out {

int nat;

} c0_out;

void c0_reset(c0_mem *self) {

self->m_nat = 0;

}

void c0_step(c0_out *_out, c0_mem *self) {

int v;
_out->nat = self->m_nat;

v = (_out->nat+1);

self->m_nat = v;;

}

On peut ensuite produire du code exécutable avec n’importe quel com-
pilateur C, et lancer le programme en appelant la fonction c0_step()

de façon répétée, par exemple à intervalle de temps physique fixe.

Instances. On a vu que tout usage d’un délai donnait lieu à l’usage
d’une mémoire dans le code final. Lorsqu’un nœud f applique un
nœud g, il faut donc qu’une nouvelle copie des mémoires de g soit
créée. Considérons le code ci-dessous.

(* Code source en Heptagon/MiniLS. *)

node c1() returns (o : int)

let

o = c0() + c0() + (0 fby o);

tel

programmation synchrone 47

Une fois ce code MiniLS normalisé et ordonnancé, il est traduit par le
compilateur Heptagon vers la machine Obc suivante.

machine c1 =

var v_3: int;

obj c0_1 : c0; c0 : c0;

reset() returns () {

c0_1.reset();

c0.reset();

mem(v_3) = 0

}

step() returns (o: int) {

var v_2: int; v_1: int; v: int;

(v_1) = c0_1.step();

(v) = c0.step();

v_2 = ((+) v v_1);

o = ((+) v_2 mem(v_3));

mem(v_3) = o

}

En plus de la mémoire v_3, la machine c1 contient deux instances,
c’est-à-dire des sous-machines nommées. Chacune des deux instances
correspond à un appel à c0 depuis c1, et stocke les mémoires correspon-
dantes. Observons que la méthode reset de la machine c1 réinitialise
récursivement ces deux instances, pour que leurs mémoires soient éga-
lement réinitialisées. La méthode step fait appel aux méthodes step

des instances pour calculer leurs sorties respectives.

Réinitialisation. La mémoire du code généré par Heptagon est donc
arborescente : chaque nœud donne lieu à une machine dont la mémoire
contient une copie de la mémoire de chacune de ses sous-machines,
et ainsi de suite. Puisque chaque sous-machine correspondant à un
appel de nœud dans le code source, éviter ces appels peut parfois
être judicieux. Par exemple dans le cas du nœud c1 précédent, une
seule copie de c0 aurait suffit, et on aurait pu multiplier sa sortie par
deux. Dans beaucoup de cas, on ne peut toutefois pas éviter d’appeler
le même nœud plusieurs fois. Considérons par exemple le nœud c2

suivant.

(* Code source en Heptagon/MiniLS. *)

node c2() returns (o : int)

var h : bool; a, b : int;

let

h = true fby not h;

programmation synchrone 48

a = c0();

reset b = c0() every h;

o = a + b;

tel

Il est compilé vers la machine Obc ci-dessous.

machine c2 =

var h: bool;

obj c0_1 : c0; c0 : c0;

reset() returns () {

c0_1.reset();

c0.reset();

mem(h) = true

}

step() returns (o: int) {

var v: bool; a: int; b: int;

switch (mem(h)) {

case true:

c0_1.reset()

};

(b) = c0_1.step();

(a) = c0.step();

o = ((+) a b);

v = not(mem(h));

mem(h) = v

}

La construction reset/every a été traduite vers un appel à la mé-
thode reset de l’instance c0_1 lorsque la mémoire h contient le booléen
vrai à la réaction courante. On voit ici que les deux instances ne peuvent
pas être fusionnées, puisqu’elles transportent des valeurs distinctes.

Contrôle et horloges. Seules deux constructions de MiniLS peuvent
induire la présence de conditionnelles dans le code généré ;

1. la réinitialisation (cf. exemple précédent),

2. les horloges.

Pour voir comment les horloges interagissent avec le processus de
génération de code, considérons l’exemple suivant.

(* Code source en Heptagon/MiniLS. *)

node c3(c : bool) returns (o : int)

var a, b : int;

programmation synchrone 49

let

a = c0 ();

b = c0 ();

o = merge c a (b whenot c);

tel

Question 24. Donnez un chronogramme montrant les valeurs des variables a, b
et o pour c valant true :: false :: false :: true :: . . . Déduisez-en les horloges de
ces trois variables.

En écrivant un chronogramme, on réalise que b et o sont sur l’horloge
de base “.”, tandis que a est sur l’horloge ”. on c”. Ces horloges
dictent les réactions auxquelles les instances des machines utilisées
pour calculer b et c doivent être activées dans la méthode step de c3.

machine c2 =

obj c0_1 : c0;c0 : c0;

reset() returns () {

c0_1.reset();

c0.reset()

}

step(c: bool) returns (o: int) {

var a: int; b: int;

(b) = c0_1.step();

switch (c) {

case true:

(a) = c0.step();

o = a

case false:

o = b

}

}

Question 25. Que se passe-t-il si l’appel à c0_1.step() est déplacé dans la
deuxième branche de la conditionnelle ?

Récapitulatif La traduction de MiniLS vers du code impératif obéit
donc aux principes suivants.

1. Un nœud est traduit vers une machine, qui réunit un ensemble de
mémoires, d’instances et de méthodes.

— Chaque délai donne lieu à une mémoire,

— chaque appel de nœud donne lieu à une instance.

2. Les équations MiniLS sont traduites vers des instructions qui consti-
tuent le corps de la méthode step de la machine.

programmation synchrone 50

— Elles doivent être ordonnées pour respecter les dépendances. . .

— et permettre de mettre à jour en place les mémoires.

3. La réinitialisation est implémentée en appelant la méthode reset de
l’instance correspondante.

4. Les horloges déterminent à quelles réactions chaque instruction doit
être calculée. Elles sont traduites vers des conditions booléennes qui
gardent l’exécution des instructions.

De Heptagon à MiniLS

Le compilateur traduit progressivement les structures de contrôle de
haut niveau en équations simples. Ce processus est structuré en deux
grandes étapes : d’abord l’élimination des automates, puis l’élimination
des autres structures de contrôle. Le code résultat est finalement traduit
en MiniLS. Cette sous-section détaille ces traductions par l’exemple,
sans donner leur forme générale, qui peut être trouvée dans les articles
scientifiques idoines.

Élimination des automates. Pour comprendre comment le compilateur
Heptagon va éliminer les automates hiérarchiques, on va observer son
action en commençant par du code très simple. La conception générale des automates

ainsi que le schéma général de leur tra-
duction telle qu’implémentée dans le
compilateur Heptagon est présenté par
les articles suivants de Colaço, Hamon,
Pagano et Pouzet.

J.-L. Colaço, B. Pagano, and M. Pou-
zet. A Conservative Extension of Syn-
chronous Data-flow with State Machines.
In ACM International Conference on Em-
bedded Software (EMSOFT’05), Jersey city,
New Jersey, USA, September 2005; and
J.-L. Colaço, G. Hamon, and M. Pouzet.
Mixing Signals and Modes in Synchro-
nous Data-flow Systems. In ACM Inter-
national Conference on Embedded Software
(EMSOFT’06), Seoul, South Korea, Octo-
ber 2006

node f(x : bool) returns (o : int)

let

automaton

state A

do o = 0 fby (o + 1)

unless x continue B

state B

do o = 1 fby (2 * o)

until x continue A

end

tel

Après élimination des automates, on obtient le code suivant.

type st = St_A | St_B

node f(x : bool) returns (o : int)

var s, ns : st; r, nr, pnr : bool;

let

switch (St_A fby ns)

| St_A

do reset (s, r) =

if x then (St_B, false) else (St_A, pnr)

programmation synchrone 51

every pnr

| St_B

do reset (s, r) = (St_B, pnr)

every pnr

end;

switch (s)

| St_A

do reset (ns, nr) = (St_A, false);

o = 0 fby (o + 1)

every r

| St_B

do reset (ns, nr) = if x then (St_A, false)

else (St_B, false);

o = 1 fby (2 * o)

every r

end;

pnr = false fby nr

tel

Le nœud obtenu est le fruit d’une transformation générale et systéma-
tique réduisant les automates hiérarchiques à la construction switch.
Pour cette raison, il contient une certaine quantité de redondance.

Question 26. Comment évoluent les flots r, nr et pnr au cours du temps ?

Un peu de réflexion permet de se convaincre que ces trois flots valent
constamment false. On peut donc simplifier manuellement le code
pour obtenir un équivalent plus facile à lire.

node f(x : bool) returns (o : int)

var s : st; ns : st;

let

switch St_A fby ns

| St_A do s = if x then St_B else St_A

| St_B do s = St_B

end;

switch s

| St_A do ns = St_A; o = 0 fby (o + 1)

| St_B do ns = if x then St_A else St_B;

o = 1 fby (2 * o)

end;

tel

Comment lier ce code au code à l’automate de départ ? Tout d’abord, on
peut constater que le compilateur a défini un nouveau type st dont les
valeurs sont les états potentiels de l’automate, ici nommés St_A et St_B.
Ensuite, que la passe d’élimination des automates a également introduit

programmation synchrone 52

deux nouvelles variables locales de type st, à savoir s et ns. Le flot s
transporte l’état courant de l’automate, tandis que ns transporte l’état
qui sera le sien au prochain instant — sauf si une transition unless

se produit. La présence de deux utilisations du mot-clef switch reflète
cette distinction entre état courant et prochain état.

— Le premier bloc switch calcule l’état courant en fonction de la va-
leur précédente de ns et de l’entrée x. Au premier instant, tout se
passe comme si l’automate avait été démarré dans l’état initial A.
Si l’on a déterminé à l’instant précédent que le nouvel état devrait
être St_B, alors l’état courant est toujours St_B, reflétant l’absence
de transition forte dans l’état B. En revanche, si l’on a déterminé
à l’instant précédent que le nouvel état devrait être St_A, l’équa-
tion s = if x then St_B else St_A fixe l’état courant en fonction
de x. Ce comportement reflète la présence d’une transition forte sur x
dans l’état A.

— Le second bloc switch calcule le prochain état prévu ainsi que
la valeur de la sortie o en fonction de l’état courant. Le calcul
du prochain état reflète la présence ou l’absence de transitions
faibles à l’état courant. Ainsi, aucune transition faible n’est pré-
sente à l’état A, ce qui est reflété par l’équation ns = St_A. À l’in-
verse, l’équation ns = if x then St_A else St_B traduit la transi-
tion until x then A dans l’état B.

La traduction générale des automates suit le schéma que nous venons
d’illustrer sur un exemple. Le point le plus important est l’utilisation
de deux flots distincts pour représenter l’état courant de l’automate, et
l’état de l’automate à l’instant suivant en l’absence de transition forte.

Notre exemple précédent ne disposait que de transitions conti-
nuantes. Pour comprendre la traduction des transitions réinitialisantes,
on peut observer le résultat de la traduction une fois le mot-clef continue
remplacé par then. On obtient alors le code ci-dessous.

type st = St_A | St_B

node f(x : bool) returns (o : int)

var s, ns : st; r, nr, pnr : bool;

let

switch St_A fby ns

| St_A do reset (s, r) = if x then (St_B, true)

else (St_A, pnr)

every pnr

| St_B

do reset (s, r) = (St_B, pnr) every pnr

end;

switch s

| St_A

programmation synchrone 53

do reset (ns, nr) = (St_A, false);

o = 0 fby (o + 1)

every r

| St_B

reset

(ns, nr) = if x then (St_A, true) else (St_B, false);

o = 1 fby 2 * o

every r

end;

pnr = false fby nr

tel

Cette fois-ci, les flots r, nr et pnr jouent un rôle non trivial. Le flot r est
vrai lorsqu’il faut réinitialiser l’état courant de l’automate. Le flot nr
est vrai lorsqu’il faudra réinitialiser l’état de l’automate à l’instant
suivant. Le flot pnr est vrai lorsqu’on a décidé à l’instant précédent
qu’il faudrait réinitialiser l’état de l’automate pour l’instant courant,
sauf si une transition forte est prise. En particulier, le flot r contrôle la
réinitialisation (via le mot-clef reset) des équations présentes dans le
corps d’un état de l’automate.

Enfin, remarquons que le code généré reflète une spécificité de
la sémantique des automates d’Heptagon. Il s’agit de la possibilité,
expliquée dans la première partie de ces notes, pour un état d’être
franchi instantanément. Cette situation ne se produit que lorsque qu’on
y est entré via une transition faible à la fin de l’instant précédent pour
en sortir immédiatement au début de l’instant courant. Toutefois, si
la transition faible est réinitialisante, l’état intermédiaire doit tout de
même être réinitialisé !

Élimination du contrôle. Le code produit après élimination des auto-
mates contient toujours des constructions de contrôle qui permettent
d’activer des blocs d’équations sporadiquement, et autorisent la défi-
nition d’une variable dans plusieurs blocs. On va se focaliser sur la
construction switch, le traitement de if et de present étant similaire.

Revenons au code obtenu après élimination du tout premier auto-
mate. En continuant le processus de compilation, on obtient le résultat
ci-dessous.

node f(x : bool) returns (o : int)

var s, ns : st; s_St_A, s_St_B, ck : st;

ns_St_A, ns_St_B, ck_1 : st; o_St_A, o_St_B : int;

let

(* Traduction du premier switch. *)

s = merge ck (St_B -> s_St_B)(St_A -> s_St_A);

(* Première branche du premier switch. *)

programmation synchrone 54

s_St_B = St_B;

(* Seconde branche du premier switch. *)

s_St_A = if (x when St_A(ck)) then St_B else St_A

ck = St_A fby ns;

(* Traduction du second switch. *)

ns = merge ck_1 (St_B -> ns_St_B)(St_A -> ns_St_A);

o = merge ck_1 (St_B -> o_St_B)(St_A -> o_St_A);

(* Première branche du second switch. *)

ns_St_B = if (x when St_B(ck_1)) then St_A else St_B;

o_St_B = 1 fby (2 * (o when St_B(ck_1)));

(* Seconde branche du second switch. *)

ns_St_A = St_A;

o_St_A = 0 fby ((o when St_A(ck_1)) + 1);

ck_1 = s

tel

La traduction réalisée est plus simple que celle qui élimine les auto-
mates. Elle s’appuie sur les opérateurs de sélection et de fusion, ainsi
que sur la notion d’horloge. La condition qui détermine la branche
active de chaque switch donne lieu à une nouvelle variable d’horloge,
ici ck pour le premier switch et ck1 pour le second. L’essentiel de
la traduction consiste à distinguer soigneusement les définitions et
usages d’une variable s déclarée à l’extérieur du switch – les variables
déclarées localement peuvent être traduites telles quelles. Ainsi, les
deux définitions de la variable s donnent lieu à deux variables dis-
tinctes s_St_A et s_St_B, qui sont fusionnées selon ck. Ces variables
étant d’horloges lentes, elles doivent appliquer l’opérateur de sélection
aux variables définies à l’extérieur du switch, par exemple x dans la
définition de s_St_A.

Élimination de la réinitialisation par bloc. La construction de réinitialisa-
tion de MiniLS ne s’applique qu’aux appels de fonctions. Il faut donc
ramener la construction générale reset bloc every c d’Heptagon à ce
cas particulier. Ce processus consiste essentiellement à introduire des
conditionnelles autour des mémoires (fby, pre et ->). Pour l’illustrer,
considérons les deux compteurs d’événements ci-dessous.

node countreset(e, rst : bool) returns (o : int)

var c : int;

let

c = if e then 1 else 0;

reset o = (0 fby o) + c every rst;

tel

node countreset2(e, rst : bool) returns (o : int)

programmation synchrone 55

let

reset o = sum(if e then 1 else 0) every rst;

tel

Le second compteur est une variante du premier où l’on a isolé le fby

dans son propre nœud sum. Le compilateur produit par le compilateur
après élimination de la construction reset est le suivant.

node countreset(e : bool; rst : bool) returns (o : int)

var c : int;

let

c = if e then 1 else 0;

o = (if rst then 0 else 0 fby o + c)

tel

node countreset2(e : bool; rst : bool) returns (o : int)

let

o = sum(if e then 1 else 0) every rst

tel

Dans le premier cas, la construction de réinitialisation a été totalement
éliminée via l’introduction d’une conditionnelle qui teste explicitement
le flot contrôlant la réinitialisation autour du fby. Dans le second cas,
cette approche n’est pas possible puisque le nœud sum est traité comme
une boîte noire. On repose donc sur la présence de la construction every

en MiniLS, variante de la réinitialisation qui ne s’applique qu’aux
appels de nœuds. Comme on l’a expliqué dans ce qui précède, cette
construction sera ultimement implémentée par un appel à une fonction
de réinitialisation dédiée dans le code C final.

Élimination des mémoires partagées. Enfin, MiniLS ne dispose pas de
mémorie partagées (variables last), il faut donc éliminer celles-ci. Pour
comprendre la traduction, considérons un exemple très simple de
programme utilisant last.

node f(x : int) returns (last o : int = 0)

let

o = x + last o;

tel

Le code MiniLS obtenu est le suivant.

node f(x : int) returns (o : int)

var o_1 : int;

let

o_1 = 0 fby o;

o = (x + o_1)

tel

programmation synchrone 56

La traduction consiste simplement à introduire une nouvelle variable
qui représente la valeur précédente de o, ici o_1. Cette variable est le
résultat d’un opérateur fby initialisé avec la valeur spécifiée lors de la
déclaration de o comme mémoire. En l’absence de valeur d’initialisation
déclarée, la définition de o_1 utilisera plutôt l’opérateur pre.

L’élimination des last est réalisée en plusieurs étapes. Une partie est
effectuée lors de l’élimination des automates. L’autre lors d’une passe
idoine réalisée juste avant la production de code MiniLS, et qui n’a
donc pas à se soucier des structures de contrôle.

Types, initialisation, causalité, horloges

Les programmes Heptagon sont soumis à une batterie d’analyses qui
visent à interdir toute une classe d’erreurs. Ces analyses sont statiques :
elles n’ont pas besoin d’exécuter le programme, et donc de disposer
des données d’entrées. En contrepartie, elles sont imprécises, en ce
qu’elles vont avoir tendance à rejeter des programmes corrects. Ce
compromis familier est au cœur de la famille d’analyses statiques la
plus populaire : les systèmes de types. Par exemple, une expression C
comme (x && false ? NULL : 42.f) s’évalue toujours vers le nombre
à virgule flottante 42.f mais est rejetée comme incorrecte.

Dans le cas d’Heptagon, les analyses statiques sont au nombre de
quatre : typage de données, analyse d’initialisation, analyse de causalité,
calcul d’horloge. Le typage de données, l’analyse d’initialisation et le
calcul d’horloge sont des systèmes de types. Les systèmes de types,
en règle général, ont l’avantage d’être modulaires : ils permettent de
traiter un nœud f comme une boîte noire, à partir du moment où
le type de f est connu. Les quatre analyses sont appliquées au code
source Heptagon, à l’exception du calcul d’horloge qui est appliqué sur
MiniLS, et donc après l’élimination des structures de contrôle de haut
niveau. On décrit brièvement chacune d’entre elles.

Types de données. Le système de types de données n’a rien de re-
marquable, et se rapproche de celui d’un langage comme Pascal. La
grammaire qui décrit un type de données τd est

τd ::= s | τd × · · · × τd | τd^n

où s est un nom de type défini, qu’il s’agisse d’un type de base prédé-
claré comme int ou float, ou d’un type énuméré ou enregistrement
défini par l’utilisateur. L’absence de type fonctionnel trahit le fait qu’un
nœud Heptagon ne peut ni renvoyer ni recevoir en paramètre un autre
nœud : le langage est de premier ordre. Les types sont vérifiés à partir
des déclarations de variables, et non inférés comme dans un langage
comme OCaml.

programmation synchrone 57

Initialisation. L’analyse d’initialisation vise à assurer que la valeur nil
produite par chaque utilisation de l’opérateur pre au premier instant
n’ait pas d’impact sur le comportement final du programme. Elle est
implémentée comme un système de types. La grammaire qui décrit un
type d’initialisation τi est

δ ::= 0 | 1 | δ × · · · × δ.

où les deux seuls types de base 0, qui classifie les valeurs toujours
initialisées, et 1, qui classifie les valeurs potentiellement non-initialisées. Ces
deux types sont liés par une relation de sous-typage qui spécifie 0 ≤ 1.
Celle-ci reflète qu’il n’est pas incorrect d’oublier qu’une valeur est
initialisée pour prétendre qu’elle ne l’est potentiellement pas. Elle
permet d’utiliser une expression initialisée partout où une expression
potentiellement non-initialisée peut convenir.

Comme tout système de types, l’analyse d’initialisation spécifie pour
chaque opération du langage une règle de déduction qui permet de
déduire du type des arguments le type du résultat. Les règles les plus
intéressantes sont les suivantes. On présente les règles de déduction dans

un style informel mais intuitif. Le lecteur
intéressé pourra se référer à l’article de
Jean-Louis Colaço et Marc Pouzet [6], qui
sert de base à l’implémentation réalisée
dans le compilateur Heptagon.

Const

c : 0

Op

e1 : δ1 e2 : δ2

op(e1, e2) : max(δ1, δ2)

Pre

e : 0

pre e : 1

Init

e1 : δ e2 : 1

e1 -> e2 : δ

LastVal

last x : ... = v

last x : 0

LastNoVal

last x : ... = v

last x : 1

Fby

e1 : δ e2 : 0

e1 fby e2 : δ

Les constantes sont toujours initialisées. Le résultat d’un opérateur
comme l’addition est potentiellement non initialisé dès que l’un de ses
arguments l’est. Le résultat d’un pre n’est par définition pas initialisé,
mais son argument doit l’être, ce qui interdit notamment d’écrire une
expression de la forme pre (pre e). Le résultat de e1 -> e2 est aussi
initialisé que l’est e1. Enfin, une variable last est initialisée si sa décla-
ration fourni une valeur d’initialisation. Enfin, le résultat de e1 fby e2

est aussi initialisé que l’est e1.

Causalité. L’analyse de causalité actuellement implémentée dans Hep-
tagon ne prend pas la forme d’un système de types, mais d’une analyse
à base de contraintes très simples. Elle est toutefois peu modulaire, puis-
qu’elle suppose que tous les résultats d’un appel de nœud dépendent
de tous les arguments.

Une contrainte de causalité peut être vue comme une formule logique
qui décrit un ordre entre les équations du nœud dont on cherche à
vérifier la causalité. La grammaire qui décrit les contraintes C est

C ::= write(x) | read(x) | ⊤ | C ∧ C | C < C | (C, . . . , C)

programmation synchrone 58

où x dénote une variable du nœud en considération. Chaque nœud La syntaxe réelle utilisée par Heptagon
inclut la disjonction de contrainte C ∨ C.
Elle est traitée séparément des autres par
une mise en forme normale disjonctive
initiale. On néglige ce cas pour ne pas
alourdir la présentation.

se voit associer une contrainte par l’analyse de causalité, et est dit cau-
sal si cette contrainte est résoluble. Intuitivement, une contrainte est
résoluble si on peut construire une fonction σ qui associe à chaque
contrainte C un entier n d’une façon “compatible” avec C. Par exemple,
si read(x) et write(x) apparaissent tous deux dans C, alors on doit
avoir σ(write(x)) < σ(read(x)), indiquant qu’une variable doit être
écrite avant d’être lue. Pour vérifier qu’il existe un tel σ, Heptagon
traduit la contrainte vers un graphe fini dont l’acyclicité équivaut à
l’existence d’une solution. Tout tri topologique du graphe construit une
solution de la contrainte initiale.

Calcul d’horloge. Le calcul d’horloge est un système de types dont nous
avons vu les grandes lignes lors de l’introduction des opérateurs de
sélection et fusion (voir la première partie des notes). Il est implémenté
après l’élimination des structures de contrôle, dont les automates. C’est
un défaut de la conception actuelle du compilateur, dans la mesure où
un message d’erreur risque d’exposer l’utilisateur au code intermédiaire
produit après l’élimination des structures de contrôle.

programmation synchrone 59

Références

[1] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guer-
nic, and R. de Simone. The Synchronous Languages 12 Years Later.
Proceedings of the IEEE, 2003.

[2] F. Bonchi and D. Pous. Checking NFA equivalence with bisimu-
lations up to congruence. In Principles of Programming Languages
(POPL’13). Association for Computing Machinery, 2013.

[3] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE : A
declarative language for programming synchronous systems. In
Principles of Programming Languages (POPL’87). Association for
Computing Machinery, 1987.

[4] J.-L. Colaço, G. Hamon, and M. Pouzet. Mixing Signals and
Modes in Synchronous Data-flow Systems. In ACM International
Conference on Embedded Software (EMSOFT’06), Seoul, South Korea,
October 2006.

[5] J.-L. Colaço, B. Pagano, and M. Pouzet. A Conservative Extension
of Synchronous Data-flow with State Machines. In ACM Internatio-
nal Conference on Embedded Software (EMSOFT’05), Jersey city, New
Jersey, USA, September 2005.

[6] J.-L. Colaço and M. Pouzet. Type-based Initialization Analysis of
a Synchronous Data-flow Language. In Synchronous Languages,
Applications, and Programming, volume 65. Electronic Notes in Theo-
retical Computer Science, 2002.

[7] L. Gérard, A. Guatto, C. Pasteur, and M. Pouzet. A Modular
Memory Optimization for Synchronous Data-flow Languages :
Application to Arrays in a Lustre Compiler. In Languages, Com-
pilers, Tools and Theory for Embedded Systems (LCTES’12). ACM,
2012.

[8] N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code
from data-flow programs. In Programming Language Implementation
and Logic Programming, Passau (Germany), August 1991.

[9] G. Kahn. The semantics of a simple language for parallel program-
ming. In Information Processing Congress (IFIP’74). IFIP, 1974.

[10] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Pro-
gramming real-time applications with SIGNAL. Proceedings of the
IEEE, 79(9) :1321–1336, 1991.

[11] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems. Springer New York, 1992.

programmation synchrone 60

[12] K. J. Åström and R. M. Murray. Feedback Systems : An Introduction
for Scientists and Engineers. Princeton University Press, Jan 2008.

	Introduction
	La programmation synchrone à flots de données
	Applications
	Compilation des langages synchrones à flots de données

