
M2 Informatique – EIDD 3A ILE Année 2025–2026

Programmation synchrone
TP3 : Manipulation de tableaux

Exercice 1 – Buffer circulaire avec détection d’erreur

Durant le cours, nous avons vu comment réaliser un buffer circulaire, c’est à dire un canal mono-
producteur mono-consommateur implémenté via un tableau de taille n fixe et une paire d’indice
évoluant dans Z/nZ. Si le rythme auquel le producteur écrit est trop différent de celui auquel le
consommateur lit, deux types d’erreurs peuvent se produire :

– un dépassement vers le haut (en anglais buffer overflow) se produit lorsque toutes les cases
du tableau sont occupées mais que le producteur indique une nouvelle valeur à stocker,

– un dépassement vers le bas (en anglais buffer underflow en anglais) se produit lorsque
toutes les cases du tableau sont libres mais que le consommateur indique vouloir lire une
nouvelle valeur.

Le but de cet exercice est de réaliser une variante évoluée du buffer circulaire vu en cours qui
soit capable de détecteur ces erreurs.

1. Relisez et recopiez le buffer circulaire produit dans les notes de cours.

node ring_buffer<<n : int>>(e : int; w, r : bool) returns (o : int)

Décrivez le rôle de chaque entrée et chaque sortie.

2. Simulez ring_buffer<<3>> de manière à compléter les valeurs de la sortie o aux instants
où r est vraie dans les chronogrammes ci-dessous.

e 12 5 8 . . .
w 1 0 1 . . .
r 1 1 1 . . .
o . . .

e 42 1 13 . . .
w 1 0 1 . . .
r 0 1 0 . . .
o × × . . .

e 8 9 10 5 3 4 7 . . .
w 1 1 1 1 0 0 0 . . .
r 0 0 0 0 1 1 1 . . .
o × × × × . . .

Pour chaque chronogramme, indiquez le premier instant auquel se produit un éventuel dé-
passement, en précisant s’il s’agit d’un dépassement vers le haut ou vers le bas.

3. Proposez une variante du buffer circulaire implémentant l’interface suivante.

node ring_buffer_checked<<n : int>>(e : int; w, r : bool)
returns (o : int; of, uf : bool)

La seule différence entre ce nœud et ring_buffer doit être la présence des sorties supplé-
mentaires of et uf. La sortie of doit être vraie à l’instant où un dépassement vers le haut se
produit, de même pour uf et les dépassements vers le bas.

Indication : détecter les dépassements est plus simple si l’on représente les indices de lecture
et d’écriture comme des entiers appartenant à N plutôt qu’à Z/nZ.

4. Le nœud précédent détecte les erreurs mais ne les ignore pas. Proposez une variante

node ring_buffer_safe<<n : int>>(e : int; w, r : bool)
returns (o : int; of, uf : bool)

qui, en plus de signaler les erreurs, ne prend pas en compte les écritures aux instants de
dépassements vers le haut, ni les lectures aux instants de dépassement vers le bas. Vérifiez
son comportement sur les chronogrammes de la question 2.

1



M2 Informatique – EIDD 3A ILE Année 2025–2026

Exercice 2 – Montre numérique

Dans cet exercice, on souhaite bâtir une montre numérique à partir des exercices des semaines
précédentes. Cette montre dispose de trois modes : affichage de l’heure courante, chronomètre,
et réglage.

– Dans le premier mode, elle affiche l’heure courante sous la forme heure/minute/seconde.
– Dans le second mode, elle affiche et contrôle la sortie d’un chronomètre fonctionnant

comme le nœud chrono3 réalisé précédemment, mais qui sera maintenant affichée dans
le format minute/seconde/centièmes de seconde.

– Dans le troisième mode, elle permet de régler les heure, minute, et seconde courantes.
Par rapport au chronomètre chrono3, la montre dispose d’une entrée supplémentaire, un flot
booléen mode. Sa sortie sera un flot de tableaux de taille trois d’entiers.

Son fonctionnement est le suivant :
– au début, elle affiche l’heure, initialisée à 00 : 00 : 00 ;
– une pression sur le bouton mode la fait passer d’un mode au suivant, dans l’ordre : heure

– chronomètre – réglage – heure – ...
– dans le mode affichage de l’heure, une pression sur les boutons rst, start_stop ou pause

n’a pas d’effet ;
– dans le mode chronomètre, elle se comporte comme chrono3 ;
– dans le mode de réglage de l’heure, on règle successivement les heures, minutes et se-

condes courantes :
— une pression sur start_stop incrémente l’entier correspondant (modulo 24 pour les

heures, modulo 60 pour les minutes et les secondes),
— une pression sur pause fait passer des heures aux minutes puis des minutes aux se-

condes, puis des secondes aux heures et
— une pression sur rst réinitialise l’heure à 00 : 00 : 00.

– Dans le mode de réglage de l’heure, l’heure de la montre continue de tourner.
Programmez un nœud montre obéissant à la spécification ci-dessus.

Pour la simulation, on définira un nœud affiche_montre pour faire un affichage confortable
de la simulation de la montre numérique et appellera montre avec pour l’entrée hs le flot de
booléens true.

Exercice 3 – Additionneurs n bits

On a vu lors des séances de travaux pratiques précédentes comment implémenter des addition-
neurs sur 1 bit, ou bien sur une suite de bits. Le but de cet exercice est de bâtir des aditionneurs
complets travaillant sur n bits, avec n quelconque.

1. Rappeller la définition de l’additionneur complet 1 bit obtenu lors de la première séance de
travaux pratiques.

2. Programmer un nœud capable d’additionner des entiers non signés sur N bits, en détectant
un éventuel dépassement de capacité via sa sorte ovf.

node addN_u<<n : int>>(a, b : bool^n) returns (s : bool^n; ovf : bool)

3. Programmer maintenant un nœud capable d’additionner des entiers signés.

node addN_s<<n : int>>(a, b : bool^n; cin : bool) returns (s : bool^n; ovf,
neg : bool)

2



M2 Informatique – EIDD 3A ILE Année 2025–2026

La sortie neg vaut 1 quand l’entier produit est strictement négatif. L’entrée cin fournit la
retenue initiale.

4. En utilisant le noeud précédent, définir un noeud capable de réaliser une addition ou une
soustraction, au choix de l’appelant.

node addsubN_s<<n : int>>(a, b : bool^n; cmd : bool)
returns (s : bool^n; ovf, neg : bool)

L’entrée cmd vaut 0 si l’opération à réaliser est a+ b, et 1 si c’est a− b.

3


