
№ étu. :

Consignes

— Le seul document autorisé est une feuille A4 manuscrite recto-verso.
— Tous les appareils électroniques doivent être éteints et rangés hors de vue.
— Vous devez rendre le sujet complété avec votre copie. Assurez-vous d’y avoir apposé votre nom.
— La clarté et la concision de vos réponses seront appréciées.

1 Analyses statiques
Le compilateur Heptagon emploie quatre analyses statiques : le typage de données, l’analyse d’initialisation,

l’analyse de causalité et le calcul d’horloge. L’objectif de cet exercice est de préciser le rôle de chacune.
1. Caractériser en une phrase les analyses statiques de programmes, par opposition aux analyses dynamiques.
2. Pour chacun des blocs d’équations ci-dessous, déterminer s’il est bien typé (en termes de données), bien initialisé,

causal, et valide du point de vue des horloges. On considèrera les analyses indépendamment. On supposera que
toutes les variables utilisées ont été déclarées de type entier. On supposera que la variable c désigne une entrée
booléenne. Aucune variable n’a reçu d’annotation d’horloge.
Vous répondrez directement sur le sujet en écrivant oui dans chaque case du tableau ci-dessous si le bloc d’équation
est valide pour l’analyse correspondante, et non sinon. Les colonnes D, I, C et H désignent respectivement le
typage de données, l’analyse d’initialisation, l’analyse de causalité et le calcul d’horloge.

Équations D I C H
x = 0 fby y ; y = x + 1
x = 0 -> y ; y = x + 1
x = 0 -> y ; y = pre x

x = 0 -> y ; y = true -> x
x = 42 ; y = 42; z = merge c x y
x = 42 ; y = 42; z = merge c x x

x = 42 ; y = (x + x) when c
x = 42 ; y = x + (x when c)

x = 42 fby y ; y = (x +. x) when c
x = 42 ; y = (x when c) + (x when c)

2 Manipulation de tableaux : itération et accès indicé
L’objectif de cet exercice est de manipuler des tableaux via les itérateurs d’Heptagon (map, fold , etc.) ou bien

via les opérations primitive d’accès indicé.
1. Considérons les équations y1 = map<<10>> f(x1, x2) et y2 = fold<<5>> f(x3, x4). Supposons

que f soit une fonction attendent deux arguments de type bool et float, et que son résultat soit de type float.
Donner les types attendus de x1, x2, y1, x3, x4 et y2.

2. Définir, en utilisant l’itérateur fold , un nœud

node sumproduct<<n : int>>(x : float^n) returns (o : float)

dont la sortie, à l’instant k, est la somme des produits de tous les tableaux reçus jusqu’à l’instant k inclus, comme
exprimé par la formule ci-dessous.

(sumproduct<<n>>(x))k =
∑
i≤k

n−1∏
j=0

xi[j]

17/12/2024 1 / 2



Examen Programmation synchrone – 2024 M2 Info. & EIDD

3. Définir, en utilisant l’itérateur mapi, une fonction

fun swap<<n : int>>(x : int^n) returns (o : int^n)

qui, à chaque instant, renverse le tableau reçu en entrée. Par exemple, swap<<3>>([1, 2, 3]) est égal à la
suite constante [3, 2, 1].
On rappelle que l’itérateur mapi est identique à map, à ceci près qu’il fournit à la fonction appliquée aux éléments
du tableau l’indice de l’élément courant comme dernier argument. Ainsi, on a par exemple

mapi<<n>> f([x0, x1, . . . , xn−1]) = [f(x0, 0), f(x1, 1), . . . , f(xn−1, n− 1)].

4. Définir un nœud

node serialize<<n : int>>(x : int^n) returns (o : int)

tel que oin+j = xin[j] pour tout 0 ≤ i et 0 ≤ j < n. Voir ci-dessous pour un exemple où n = 3.

xs [0, 1, 2] [4, 5, 2] [5, 8, 7] [5, 7, 8] [3, 1, 3] [8, 0, 0] [1, 2, 4] [3, 5, 3] [6, 6, 4] . . .
o 0 1 2 5 7 8 1 2 4 . . .

5. Définir un nœud

node parallelize<<n : int>>(x : int) returns (c : bool ; o : int^n :: . on c)

tel que ck est vrai si et seulement k est égal à (i+ 1)n− 1 où i ≥ 0, et que o(ℓ+1)n−1[j] = x[ℓn+ j] où ℓ ≥ 0
et 0 ≤ j < n. Voir ci-dessous pour un exemple où n = 3.

x 0 1 2 3 4 5 6 7 8 . . .
c false false true false false true false false true . . .
o abs abs [0, 1, 2] abs abs [3, 4, 5] abs abs [6, 7, 8] . . .

3 C’est l’alarme!
On s’intéresse à la conception d’un détecteur d’intrusion simplifié. On supposera que chaque instant synchrone

dure 0, 001 secondes. Le détecteur a accès aux données produites par un capteur de mouvement et par un capteur
de température. Le premier indique si du mouvement a été détecté durant l’instant logique écoulé, le second la
température maximale dans la pièce. Ces données sont regroupées par le type suivant.

type events = { move : bool; heat : float }

1. Écrire un nœud

node time_spent_moving(e : events) returns (t : float)

dont la sortie contient la durée du dernier segment de mouvement continu mesuré lorsque du mouvement est
détecté, ou 0 sinon.

2. Écrire un nœud
node average_heat(e : events) returns (m : float)

qui renvoie la moyenne des températures maximales mesurées durant la dernière seconde.
3. Écrire un nœud

node detect(e : events) returns (a : bool)

dont la sortie passe de faux à vrai lorsqu’on a détecté du mouvement continu ainsi qu’une moyenne des tempéra-
tures maximales supérieure ou égale à 35 degrés durant la dernière seconde. Une fois l’alarme enclenchée, celle-ci
doit rester activée jusqu’à la fin de l’exécution.

17/12/2024 2 / 2


