Projet de Programmation synchrone

M2 Informatique UP & 3A EIDD

2025-2026

1 Introduction

Les langages synchrones sont utilisés pour développer des logiciels de controle-commande
dans de nombreux domaines industriels, notamment dans le cadre de systémes critiques. Le
but de ce projet est de vous donner une expérience préliminaire de ce genre de développement,
au dela des petits programmes que vous avez écrits lors des séances de travaux pratiques de la
premiere moitié du semestre. Il s’agira pour vous d’écrire un programme synchrone contrélant
un dispositif physique simplifié mais non-trivial. Nous évaluerons sa performance a ’aide d’'un
simulateur lui aussi écrit sous la forme d’un programme synchrone, et qui sera mis a votre
disposition afin de permettre ’auto-évaluation.

Le dispositif physique que votre programme va chercher a contrdler consiste en un véhicule
autonome lancé dans une ville virtuelle en deux dimensions. Le but de ce véhicule est de franchir
toutes les étapes d’un parcours préétabli tout en respectant un certain nombre de contraintes,
parmi lesquelles le respect des limitations de vitesse, des feux rouges, ou encore I’évitement des
obstacles. Votre code sera évalué sur sa capacité a arriver au bout de parcours de plus en plus
complexes dans le respect des dites contraintes. La qualité de votre code (simplicité, présence
de commentaires, modularité, clarté, etc.) sera également évaluée.

Consignes générales. Le projet est a réaliser en binome. Tout échange de code entre
binomes est strictement interdit, tout comme 'utilisation d’IA génératives, que ce soit a
des fins de genération de code source ou de rédaction du rapport.

2 Environnement de développement

2.1 Avant de débuter

Avant de vous lancer dans la réalisation du projet, vous devez avoir installé :

— un systeme d’exploitation de type UNIX comme GNU/Linux ou macOS,

— la chaine de développement C standard incluant le compilateur GCC et GNU Make
4.0+,

1. Les utilisateurs et utilisatrices de macOS devront installer GNU Make depuis leur gestionnaire de paquet
favori. Une fois installé, il leur faudra I'utiliser via la commande gmake plutét que make.

— le gestionnaire de version Git,

— la bibliothéque multimédia SDL2 (C), installable via votre gestionnaire de paquets,

— le compilateur Heptagon, installable via OPAM,

— optionnellement, les bibliothéques Pandas et Matplotlib (Python), installables via pip.

2.2 Débuter

Votre code, écrit en Heptagon, doit s’insérer dans un squelette composé de code Heptagon et
de code C. La distribution de ce squelette, le suivi du projet et le relevé final seront intégralement
réalisés via Git. Pour vous lancer dans votre copie du projet, vous devez :

1. forker le dépét Git du cours,

2. ajouter vos enseignants @guatto, @baudart et @letouzey avec le role de développeurs a
votre fork,

3. éditer le fichier AUTEURS pour y spécifier les membres de votre binéme,

4. passer votre fork en mode privé.
La derniére étape est essentielle : tout projet dont le dépét Git est public se verra automa-
tiquement attribué la note de 0. Une fois ces trois étapes réalisées, vous pouvez commencer

a travailler sur le projet en vous aidant des informations disponibles dans les sections suivantes
du document.

2.3 Rendre le projet

Le projet est a réaliser avant le
vendredi 19 décembre 2025 a 23h50.

Toute modification ultérieure a cette date sera ignorée. Le rendu se déroulera automatiquement
via Git, vous n’avez donc rien de particulier a faire si vous avez suivi les instructions ci-dessus.

Rapport. Votre dépot doit contenir un rapport présentant succinctement les fonctionnalités
réalisées, en insistant sur les éventuels points notables ou originaux de votre solution. Le
rapport doit faire deux pages maximum et consister en un fichier au format PDF présent
dans projet /RAPPORT. pdf au moment du rendu.

3 Guide du projet

3.1 Architecture du code

Le projet se présente sous la forme d’un ensemble de fichiers écrits en C et en Heptagon,
accompagneés d'un Makefile et d'un bref README.

Les fichiers écrits en C réalisent diverses taches utilitaires, ainsi que l'interface graphique du
projet. Ils utilisent la bibliothéque SDL2 pour 'interfagage avec le systeme. Leur lecture n’est
pas obligatoire, mais peut vous éclairer sur le fonctionnement concret du projet.

Les fichiers Heptagon contiennent le code du simulateur, ainsi que le code du contréleur de
véhicule. Nous vous recommandons de les lire avant de commencer a développer votre projet.

—
4\? ?}
L
A
B ¢ RC) |SO| | FC
R
=S —

FIGURE 1 — Schéma général du véhicule

Le fichier mathext . epi déclare un jeu de fonctions mathématiques élémentaires.
Les fichiers trace. epi et debug. epi déclarent un jeu de fonctions et nceuds utiles
au débogage et a la mise au point de vos programmes. Nous en discuterons en section 5.
Le fichier globals. ept contient les définitions de types et de constantes globales
utilisées par le simulateur et votre contrdleur.

Le fichierutilities. ept contient divers nceuds et fonctions utilitaires.

Le fichier control. ept estle seul fichier que vous devez modifier dans la version
finale, en y implémentant le nceud controller. La version qui vous est distribuée
contient un contréleur trivial qui laisse le véhicule inactif.

Le fichier vehicle. ept contient la partie du simulateur chargée du véhicule et de son
interfacage avec le contrdleur.

Le fichier city. ept contient la partie du simulateur chargée de simuler la ville dans
laquel le véhicule se déplace.

Le fichier challenge. ept est le fichier Heptagon principal, chargé d’interconnecter
les différents composants du simulateur.

Notez donc que toute modification des fichiers fournis sera ignorée par I'infrastructure
d’évaluation pour la note finale, a 'exception de celles apportées a control. ept.

3.2 Fonctionnement du véhicule

Le véhicule que vous devez contréler est une mini-automobile tres simplifiée mais équipée
d’actuateurs et de capteurs décrits ci-dessous. La figure 1 en donne une vue schématique.
— Elle dispose de deux roues arrieres de diametre D cm. Leurs moyeux sont distants de B

cm. Ces roues sont motrices : elles sont connectées par deux axes indépendants a deux
moteurs distincts, L (pour left) et R (pour right). Votre controleur fixe leurs vitesses
respectives.

— Elle dispose de deux capteurs colorimétriques.

— Le capteur ventral RC (pour road color) fournit la couleur de la route sous 'automobile.

FIGURE 2 — Un exemple de carte

Il est disposé a une distance A cm du point a mi-chemin des moyeux des deux roues.
— Le capteur frontal F'C (pour front color) fournit la couleur d’un éventuel feu rouge en
face de 'automobile.
Votre contrdleur peut lire les couleurs détectées par ces deux capteurs.
— Elle dispose d’un sonar SO capable de détecter la proximité d’un obstacle (passant). Votre
controleur a acces a la distance de ’obstacle détectée par le sonar.

3.3 Fonctionnement de la ville

Le but de votre code est de contréler le véhicule afin que celui-ci accomplisse un parcours a
travers la ville, sans accident et en respectant I'itinéraire prescrit. Le projet propose une série
de villes, les premieres étant les plus faciles a traverser. Une des cartes les plus difficiles est
représentée a la figure 2.

La route. Chaque ville comprend un certain nombre de routes interconnectées sur lesquelles
votre véhicule est censé se déplacer. Toute sortie de route constitue un accident qui met fin
a la simulation. Les routes sont marquées au sol pour vous aider a éviter un tel sort.

Le marquage est représenté a la figure 3. La bande bleue foncé marque le centre de la route,
la bande cyan son coté gauche, la bande magenta son cé6té droit. Votre véhicule doit chercher
a rester au centre, sur la bande bleue. Le controleur a acceés a cette couleur via son capteur
ventral RC'. Attention : lorsque votre véhicule se situe a la frontiere entre plusieurs bandes, il
capture une combinaison des couleurs de chaque bande.

En plus des bandes de guidage, le marquage fournit également des bandes vertes et rouges
qui signalent respectivement la présence d’une étape ou d’un feu de signalisation. Nous allons

gauche
guide

droite

étape feu

FIGURE 3 — Marquage au sol des routes

décrire ces deux dispositifs et comment ils doivent étre pris en compte par votre contrdleur.

L’itinéraire. Chaque ville spécifie un itinéraire auquel votre contrdlleur a acces. Il s’agit d’un
tableau d’actions. Chaque action appartient a une certaine catégorie et spécifie un parametre,
ce dernier étant un nombre a virgule flottante dont la signification dépend de la catégorie de
laction. Les trois catégories d’action sont :

1. Go, qui indique que le véhicule doit avancer jusqu’a la prochaine étape a la vitesse maximale
indiquée par le parametre;

2. Turn, qui indique que le vehicule doit effectuer une rotation sur lui méme, dans le sens
inverse des aiguilles d’'une montre et d’'un angle en degrés indiqué par la valeur du
parameétre;

3. Stop, qui indique que l'itinéraire est terminé — la valeur du parametre n’est pas utilisée.

L’itinéraire est donc principalement formé d’actions Go qui indiquent qu’il faut atteindre la
prochaine étape, marquée par une bande verte sur la route, et par des actions Turn, qui indiquent
que le véhicule doit tourner sur lui méme a I'étape courante.

Les feux de signalisation. Un marquage au sol de couleur rouge indique la présence d’un feu
de signalisation. Si votre véhicule est présent sur un de ces marquages, son capteur frontal RC
vous donne accés a la couleur courante du feu. Votre vehicule doit, bien entendu, les respecter!

Les obstacles. Un dernier ingrédient est la présence potentielle d’obstacles (passants, etc.) a
proximite de la route. Vous devez vous arréter si vous détectez un obstacle a proximite a I’aide
du sonar, faute de provoquer une collision qui serait dommageable a votre véhicule, a I'obstacle,
et a votre note finale au projet.

3.4 Compiler et tester son projet

Si vous avez installé les dépendances deétaillées en section 2, il suffit d’invoquer make pour
compiler le projet. Les différentes cartes sont disponibles dans le sous-dossier assets/.

L’exécutable produit, scontest, prend en argument le chemin vers la carte sur laquelle votre
controleur doit étre testé. Par souci de commodité, la cible make test lance votre projet sur
la premiére carte, ce qui devrait suffire pendant les premiers temps du développement.

4 Méthodologie suggérée

Il est conseillé d’attaquer ce projet de programmation avec méthode. La quantité de code
nécessaire a sa réalisation n’est sans doute pas tres importante comparé a d’autres projets que
vous avez réalisés pendant vos études, mais ce code peut étre assez délicat a concevoir et mettre
au point. Apres avoir parcouru le code Heptagon de simulation, nous vous suggerons de
développer votre contrdleur en passant par les étapes fonctionnelles suivantes.

1. Avancer tout droit le long d’une route longiligne, par exemple celle de la carte 00, lorsque le
vehicule a été positionné avec un angle correct initialement. Le controéleur doit étre capable
d’avancer a la vitesse maximale fournie par l'itinéraire, et ce dans la bonne direction.

2. Corriger un angle initial désaxé, puis suivre une route incurvée — par exemple, celle de la
carte 02. (Les notions d’automatique de base fournies en cours peuvent étre tres utiles ici!)

. Tourner d’un angle spécifie.

3
4. Détecter le nouveau segment de route apres une rotation.
5. Interpréter les marques d’étape au sol et I'itinéraire.

6

. Interpréter les balises d’arrét indiquant les feux de signalisation, respecter ces derniers.
7. Interpréter le sonar et éviter d’entrer en collision avec les obstacles.

Une fois toutes ces fonctionnalités implémentées, il ne vous reste plus qu’a optimiser la qualité
de votre controleur sur autant de cartes que possible.

5 Trucs et astuces

Soutien au projet. Toutes les seéances de travaux pratiques restantes sont désormais consacrées
intégralement a la réalisation du projet. Profitez-en pour discuter avec vos enseignants, qui sont
la pour c¢a, et vos camarades (mais pas d’échange de code!).

Débogage. Le code fourni dispose de fonctionnalités rudimentaires de débogage. Lisez I'in-
terface du module Debug, qui permet d’afficher sur la sortie standard les valeurs courantes
des flots accompagnées d’'un message.

Graphage. Le module Trace, permet un débogage un peu plus sophistiqué que celui offert
par Debug. Il permet de tracer I’évolution de flots booléens, entiers ou flottants au cours
du temps — cf. l'interface du module. Son fonctionnement suppose que vous ayez installé
les bibliotheques Python que sont Matplotlib et Pandas. Une fois ceci fait, pour afficher les
courbes, vous devez lancer votre binaire scontest avec 'outil hept-plot fourni dans le
dossier tools/ du dépét du cours.

6 Versions de ce document

Ce projet est I'adaptation a Heptagon par A. Guatto de celui co-réalisé en SCADE par E. Asarin
et M. Sighireanu de 2017 a 2019.

03/11/2025 Version initiale.

	Introduction
	Environnement de développement
	Avant de débuter
	Débuter
	Rendre le projet

	Guide du projet
	Architecture du code
	Fonctionnement du véhicule
	Fonctionnement de la ville
	Compiler et tester son projet

	Méthodologie suggérée
	Trucs et astuces
	Versions de ce document

