11 Commits

Author SHA1 Message Date
Tiago Batista Cardoso
3c17b5fa1f tidy 2026-01-25 16:01:11 +01:00
Tiago Batista Cardoso
600f617c85 times & readme 2026-01-25 15:22:22 +01:00
Tiago Batista Cardoso
15bfbcd0d4 code tidy 2026-01-25 14:22:20 +01:00
TIBERGHIEN corentin
55a0eb21bb dl folder fix 2026-01-25 13:22:20 +01:00
4bb5f9033b Merge pull request 'bigfix' (#5) from bigfix into master
Reviewed-on: #5
2026-01-25 02:46:52 +00:00
TIBERGHIEN corentin
b4c4f8f1be Merge remote-tracking branch 'origin' into bigfix 2026-01-25 03:46:19 +01:00
TIBERGHIEN corentin
5378474397 Merge branch 'download_progress' 2026-01-25 03:37:05 +01:00
TIBERGHIEN corentin
fbbd8cd640 big download fixed 2026-01-25 03:19:08 +01:00
TIBERGHIEN corentin
cc64aa1b88 wip big 2026-01-25 01:32:28 +01:00
TIBERGHIEN corentin
79f523be48 wip bigfix 2026-01-25 00:55:57 +01:00
Tiago Batista Cardoso
fc7886c94c progress bar 2026-01-25 00:54:54 +01:00
13 changed files with 298 additions and 738 deletions

BIN
README.md

Binary file not shown.

View File

@@ -22,7 +22,6 @@ enum ServerStatus {
pub struct P2PClientApp { pub struct P2PClientApp {
remaining: std::time::Duration, // temps restant remaining: std::time::Duration, // temps restant
last_update: std::time::Instant, // pour calculer delta last_update: std::time::Instant, // pour calculer delta
timer_started: bool,
network_cmd_tx: Sender<NetworkCommand>, network_cmd_tx: Sender<NetworkCommand>,
network_event_rx: Receiver<NetworkEvent>, network_event_rx: Receiver<NetworkEvent>,
@@ -65,7 +64,6 @@ impl P2PClientApp {
Self { Self {
remaining: std::time::Duration::from_secs(0), remaining: std::time::Duration::from_secs(0),
timer_started: false,
last_update: std::time::Instant::now(), last_update: std::time::Instant::now(),
network_cmd_tx: cmd_tx, network_cmd_tx: cmd_tx,
network_event_rx: event_rx, network_event_rx: event_rx,
@@ -106,10 +104,9 @@ impl P2PClientApp {
impl eframe::App for P2PClientApp { impl eframe::App for P2PClientApp {
fn update(&mut self, ctx: &Context, _frame: &mut eframe::Frame) { fn update(&mut self, ctx: &Context, _frame: &mut eframe::Frame) {
if matches!(self.server_status, ServerStatus::Connected) && !self.timer_started { if matches!(self.server_status, ServerStatus::Connected) {
self.remaining = std::time::Duration::from_secs(30 * 60); self.remaining = std::time::Duration::from_secs(30 * 60);
self.last_update = std::time::Instant::now(); self.last_update = std::time::Instant::now();
self.timer_started = true;
} }
let now = std::time::Instant::now(); let now = std::time::Instant::now();
@@ -187,8 +184,8 @@ impl eframe::App for P2PClientApp {
None => {} None => {}
} }
} }
NetworkEvent::FileTreeRootReceived(peer_id, root_hash) => { NetworkEvent::FileTreeRootReceived(_, root_hash) => {
if let Ok(chunknode) = ChunkNode::new(Vec::new()) { if let Ok(_) = ChunkNode::new(Vec::new()) {
let data_map: HashMap<NodeHash, MerkleNode> = HashMap::new(); let data_map: HashMap<NodeHash, MerkleNode> = HashMap::new();
//data_map.insert(root_hash, MerkleNode::Chunk(chunknode)); //data_map.insert(root_hash, MerkleNode::Chunk(chunknode));
println!("len root: {}", data_map.len()); println!("len root: {}", data_map.len());
@@ -232,6 +229,7 @@ impl eframe::App for P2PClientApp {
if let Some(addr) = &self.active_peer { if let Some(addr) = &self.active_peer {
if let Some(roottree) = self.loaded_fs.get(addr) { if let Some(roottree) = self.loaded_fs.get(addr) {
if let Some(root) = roottree.data.get(&hash) { if let Some(root) = roottree.data.get(&hash) {
self.current_downloading_file_map.root = hash;
self.root_downloading_file = name; self.root_downloading_file = name;
let _ = self let _ = self
.current_downloading_file_map .current_downloading_file_map
@@ -277,7 +275,39 @@ impl eframe::App for P2PClientApp {
self.current_received_chunks = received; self.current_received_chunks = received;
} }
println!("remaining chunks size: {}", self.remaining_chunks.len());
match create_dir("./Download/") {
Ok(_) => println!("Directory created successfully!"),
Err(e) => println!("Failed to create directory: {}", e),
}
if self.remaining_chunks.is_empty() { if self.remaining_chunks.is_empty() {
let file = OpenOptions::new().append(true).create(true).open(
"./Download/".to_string()
+ &remove_null_bytes(&self.root_downloading_file.clone()),
);
if let Some(current) = self
.current_downloading_file_map
.data
.get(&self.current_downloading_file_map.root)
{
match file {
Ok(mut fileok) => {
big_or_chunk_to_file(
&self.current_downloading_file_map,
current,
&mut fileok,
);
}
Err(e) => {
eprintln!("error creaation file: {}", e);
}
}
} else {
eprintln!("error root absent");
}
println!("bigfile téléchargé {}", self.root_downloading_file);
self.current_total_chunks = None; self.current_total_chunks = None;
self.current_received_chunks = 0; self.current_received_chunks = 0;
println!("bigfile téléchargé"); println!("bigfile téléchargé");
@@ -398,28 +428,39 @@ impl eframe::App for P2PClientApp {
}); });
if ui.button("Network").clicked() { if ui.button("Network").clicked() {
self.show_network_window = true; self.show_network_window = !self.show_network_window;
} }
if self.show_network_window { if self.show_network_window {
match self.server_status { match self.server_status {
ServerStatus::Connected | ServerStatus::ConnectedHandshake => { ServerStatus::Connected | ServerStatus::ConnectedHandshake => {
let desired = egui::vec2(300.0, 0.0); // width 300, auto-height if 0 egui::Window::new("Network")
ui.set_min_size(desired); .resizable(false)
ui.vertical(|ui| { .collapsible(false)
if ui.button("Disconnect").clicked() { .title_bar(false)
println!("Disconnecting..."); .show(ctx, |ui| {
let _ = self.network_cmd_tx.send(NetworkCommand::Disconnect()); let desired = egui::vec2(300.0, 0.0); // width 300, auto-height if 0
self.server_status = ServerStatus::NotConnected; ui.set_min_size(desired);
self.remaining = std::time::Duration::from_secs(0); ui.vertical(|ui| {
self.timer_started = false; if ui.button("Disconnect").clicked() {
self.show_network_window = false; println!("Disconnecting...");
} let _ = self
}); .network_cmd_tx
.send(NetworkCommand::Disconnect());
self.server_status = ServerStatus::NotConnected;
self.remaining = std::time::Duration::from_secs(0);
self.show_network_window = false;
self.loaded_fs.clear();
self.active_peer = None;
}
});
});
} }
ServerStatus::NotConnected => { ServerStatus::NotConnected => {
egui::Window::new("Network") egui::Window::new("Network")
.resizable(false) .resizable(false)
.collapsible(false)
.title_bar(false)
.show(ctx, |ui| { .show(ctx, |ui| {
ui.horizontal(|ui| { ui.horizontal(|ui| {
ui.label("Server IP:"); ui.label("Server IP:");
@@ -612,7 +653,7 @@ impl eframe::App for P2PClientApp {
_ => {} _ => {}
} }
if ui.button("Send Ping").clicked() { if ui.button("Send Ping").clicked() {
let res = self.network_cmd_tx.send(NetworkCommand::Ping( let _ = self.network_cmd_tx.send(NetworkCommand::Ping(
peer.0.to_string(), peer.0.to_string(),
self.connected_address.clone(), self.connected_address.clone(),
)); ));
@@ -806,7 +847,7 @@ impl P2PClientApp {
} }
}); });
} }
MerkleNode::Big(node) => { MerkleNode::Big(_) => {
if ui if ui
.selectable_label(false, format!("📄 (B) {}", name)) .selectable_label(false, format!("📄 (B) {}", name))
.on_hover_text("Click to request file chunks...") .on_hover_text("Click to request file chunks...")

View File

@@ -1,11 +1,6 @@
use std::io::Read;
use bytes::Bytes; use bytes::Bytes;
use p256::EncodedPoint; use p256::EncodedPoint;
use p256::ecdsa::{ use p256::ecdsa::{Signature, SigningKey, VerifyingKey, signature::Verifier};
Signature, SigningKey, VerifyingKey,
signature::{Signer, Verifier},
};
use rand_core::OsRng; use rand_core::OsRng;
use sha2::{Digest, Sha256}; use sha2::{Digest, Sha256};
@@ -37,15 +32,6 @@ impl CryptographicSignature {
} }
} }
///
/// returns a string representing the pub_key as a String
///
pub fn formatPubKey(crypto_pair: CryptographicSignature) -> String {
let encoded_point = crypto_pair.pub_key.to_encoded_point(false);
let pubkey_bytes = encoded_point.as_bytes();
hex::encode(pubkey_bytes)
}
pub async fn get_peer_key(username: &String) -> Result<VerifyingKey, reqwest::Error> { pub async fn get_peer_key(username: &String) -> Result<VerifyingKey, reqwest::Error> {
let client = reqwest::Client::new(); let client = reqwest::Client::new();
let uri = format!("https://jch.irif.fr:8443/peers/{}/key", username); let uri = format!("https://jch.irif.fr:8443/peers/{}/key", username);
@@ -126,34 +112,7 @@ pub fn sign_message(crypto_pair: &CryptographicSignature, message: &Vec<u8>) ->
signed_message signed_message
} }
Err(e) => { Err(e) => {
panic!("error"); panic!("error : {}", e);
} }
} }
} }
#[cfg(test)]
mod tests {
use super::*;
/*
///
/// creates a cryptographic signature
///
#[test]
fn creating_cryptographic_signature() {
let username = String::from("gamixtreize");
let crypto_pair = CryptographicSignature::new(username);
let formatted_pubkey = formatPubKey(crypto_pair);
println!("pubkey : {}", formatted_pubkey);
}*/
/*#[test]
fn signing_message() {
let username = String::from("gamixtreize");
let crypto_pair = CryptographicSignature::new(username.clone());
let handshake = HandshakeMessage::hello(0, 12, username);
let ser = handshake.serialize();
let signed_message = sign_message(&crypto_pair, &ser);
println!("unsigned_message: {:?}", ser);
println!("signed_message: {:?}", signed_message);
}*/
}

View File

@@ -1,14 +1,9 @@
use rand::{Rng, rng}; use rand::{Rng, rng};
use sha2::{Digest, Sha256}; use sha2::{Digest, Sha256};
use std::collections::HashMap; use std::collections::HashMap;
use std::hash::{DefaultHasher, Hash, Hasher};
use std::fs::{File, OpenOptions, create_dir}; use std::fs::{File, OpenOptions, create_dir};
use std::io::{self, Write}; use std::io::Write;
use std::env;
use crate::data;
// --- Constants --- // --- Constants ---
pub const MAX_CHUNK_DATA_SIZE: usize = 1024; pub const MAX_CHUNK_DATA_SIZE: usize = 1024;
@@ -67,18 +62,12 @@ impl ChunkNode {
pub fn new_random() -> Self { pub fn new_random() -> Self {
let mut rng = rand::rng(); let mut rng = rand::rng();
// Determine a random length between 1 and MAX_CHUNK_DATA_SIZE (inclusive).
// Using +1 ensures the range is up to 1024.
let random_len = rng.random_range(1..=MAX_CHUNK_DATA_SIZE); let random_len = rng.random_range(1..=MAX_CHUNK_DATA_SIZE);
// Initialize a vector with the random length
let mut data = vec![0u8; random_len]; let mut data = vec![0u8; random_len];
// Fill the vector with random bytes
rng.fill(&mut data[..]); rng.fill(&mut data[..]);
// Since we generated the length based on MAX_CHUNK_DATA_SIZE,
// this is guaranteed to be valid and doesn't need to return a Result.
ChunkNode { data } ChunkNode { data }
} }
} }
@@ -193,17 +182,6 @@ fn hash(data: &[u8]) -> NodeHash {
println!("root hash: {:?}", root_hash); println!("root hash: {:?}", root_hash);
let res: NodeHash = root_hash.try_into().expect("incorrect size"); let res: NodeHash = root_hash.try_into().expect("incorrect size");
res res
/*let mut hasher = DefaultHasher::new();
data.hash(&mut hasher);
let hash_u64 = hasher.finish();
let mut hash_array = [0u8; FILENAME_HASH_SIZE];
// Simple way to spread a 64-bit hash across 32 bytes for a unique-ish ID
for i in 0..8 {
hash_array[i] = (hash_u64 >> (i * 8)) as u8;
}
hash_array // The rest remains 0, satisfying the 32-byte requirement
*/
} }
fn generate_random_filename() -> [u8; FILENAME_HASH_SIZE] { fn generate_random_filename() -> [u8; FILENAME_HASH_SIZE] {
@@ -345,9 +323,9 @@ pub fn generate_base_tree() -> MerkleTree {
let oscar_content = "oscar is the opponent".to_string().into_bytes(); let oscar_content = "oscar is the opponent".to_string().into_bytes();
let mut children_nodes = Vec::new(); let mut children_nodes = Vec::new();
for i in 0..10 { for _ in 0..10 {
let mut i_nodes = Vec::new(); let mut i_nodes = Vec::new();
for j in 0..10 { for _ in 0..10 {
let node1 = MerkleNode::Chunk(ChunkNode::new(bob_content.clone()).unwrap()); let node1 = MerkleNode::Chunk(ChunkNode::new(bob_content.clone()).unwrap());
let hash = hash(&node1.serialize()); let hash = hash(&node1.serialize());
i_nodes.push(hash); i_nodes.push(hash);
@@ -368,14 +346,14 @@ pub fn generate_base_tree() -> MerkleTree {
let node2 = MerkleNode::Chunk(ChunkNode::new(alice_content).unwrap()); let node2 = MerkleNode::Chunk(ChunkNode::new(alice_content).unwrap());
let hash2 = hash(&node2.serialize()); let hash2 = hash(&node2.serialize());
//res.insert(hash1, node1); res.insert(hash1, node1);
//res.insert(hash2, node2); res.insert(hash2, node2);
res.insert(hashbig, bignode); res.insert(hashbig, bignode);
let node3 = MerkleNode::Chunk(ChunkNode::new(oscar_content).unwrap()); let node3 = MerkleNode::Chunk(ChunkNode::new(oscar_content).unwrap());
let hash3 = hash(&node3.serialize()); let hash3 = hash(&node3.serialize());
//res.insert(hash3, node3); res.insert(hash3, node3);
let dir1 = MerkleNode::Directory(DirectoryNode { let dir1 = MerkleNode::Directory(DirectoryNode {
entries: [DirectoryEntry { entries: [DirectoryEntry {
@@ -386,7 +364,7 @@ pub fn generate_base_tree() -> MerkleTree {
}); });
let hash_dir1 = hash(&dir1.serialize()); let hash_dir1 = hash(&dir1.serialize());
//res.insert(hash_dir1, dir1); res.insert(hash_dir1, dir1);
let root = MerkleNode::Directory(DirectoryNode { let root = MerkleNode::Directory(DirectoryNode {
entries: [ entries: [
@@ -394,14 +372,14 @@ pub fn generate_base_tree() -> MerkleTree {
filename: generate_random_filename(), filename: generate_random_filename(),
content_hash: hashbig, content_hash: hashbig,
}, },
/*DirectoryEntry { DirectoryEntry {
filename: generate_random_filename(), filename: generate_random_filename(),
content_hash: hash2, content_hash: hash2,
}, },
DirectoryEntry { DirectoryEntry {
filename: generate_random_filename(), filename: generate_random_filename(),
content_hash: hash_dir1, content_hash: hash_dir1,
},*/ },
] ]
.to_vec(), .to_vec(),
}); });
@@ -473,50 +451,16 @@ pub fn big_or_chunk_to_file(tree: &MerkleTree, node: &MerkleNode, file: &mut Fil
} }
} }
MerkleNode::Chunk(chunk) => { MerkleNode::Chunk(chunk) => {
println!("wrote data"); if !chunk.data.is_empty() {
let _ = file.write_all(&chunk.data); let mut data = chunk.data.clone();
data.remove(0);
let _ = file.write(&data);
} else {
println!("chunk.data is empty, nothing to write");
}
} }
_ => { _ => {
println!("invalid type of file"); println!("invalid type of file");
} }
} }
} }
#[cfg(test)]
mod tests {
use super::*;
///
/// creates a cryptographic signature
///
#[test]
fn test_saving_tree() {
if let Ok(current_dir) = env::current_dir() {
println!("Current working directory: {:?}", current_dir);
}
println!("--------- tree test starts ------------");
match create_dir("../Download/") {
Ok(_) => println!("Directory created successfully!"),
Err(e) => println!("Failed to create directory: {}", e),
}
let tree = generate_base_tree();
println!("--------- test tree created ------------");
if let Some(root_node) = tree.data.get(&tree.root) {
node_to_file(&tree, root_node, "../Download/".to_string(), 0);
}
}
/*#[test]
fn signing_message() {
let username = String::from("gamixtreize");
let crypto_pair = CryptographicSignature::new(username.clone());
let handshake = HandshakeMessage::hello(0, 12, username);
let ser = handshake.serialize();
let signed_message = sign_message(&crypto_pair, &ser);
println!("unsigned_message: {:?}", ser);
println!("signed_message: {:?}", signed_message);
}*/
}

View File

@@ -1,200 +0,0 @@
use crate::data::*;
use rand::{Rng, rng};
use std::collections::HashMap;
use std::hash::{DefaultHasher, Hash, Hasher};
fn hash(data: &[u8]) -> NodeHash {
let mut hasher = DefaultHasher::new();
data.hash(&mut hasher);
let hash_u64 = hasher.finish();
let mut hash_array = [0u8; FILENAME_HASH_SIZE];
// Simple way to spread a 64-bit hash across 32 bytes for a unique-ish ID
for i in 0..8 {
hash_array[i] = (hash_u64 >> (i * 8)) as u8;
}
hash_array // The rest remains 0, satisfying the 32-byte requirement
}
fn generate_random_filename() -> [u8; FILENAME_HASH_SIZE] {
let mut rng = rand::rng();
let mut filename_bytes = [0; FILENAME_HASH_SIZE];
// Generate a random length for the base name
let name_len = rng.random_range(5..21);
// Generate random alphanumeric characters
for i in 0..name_len {
let char_code = rng.random_range(97..123); // 'a' through 'z'
if i < FILENAME_HASH_SIZE {
filename_bytes[i] = char_code as u8;
}
}
// Append a common extension
let ext = if rng.random_bool(0.5) { ".txt" } else { ".dat" };
let ext_bytes = ext.as_bytes();
let start_index = name_len.min(FILENAME_HASH_SIZE - ext_bytes.len());
if start_index < FILENAME_HASH_SIZE {
filename_bytes[start_index..(start_index + ext_bytes.len())].copy_from_slice(ext_bytes);
}
filename_bytes
}
fn generate_random_file_node(
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let is_big = rng.random_bool(0.2); // 20% chance of being a big file
if !is_big {
// Generate a simple Chunk Node
let node = MerkleNode::Chunk(ChunkNode::new_random());
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a Big Node (a file composed of chunks)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(8)); // Limit complexity
let mut children_hashes = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Chunk or Big; for simplicity, we only generate Chunk children here.
let chunk_node = MerkleNode::Chunk(ChunkNode::new_random());
let chunk_hash = hash(&chunk_node.serialize());
storage.insert(chunk_hash, chunk_node);
children_hashes.push(chunk_hash);
}
let node = MerkleNode::Big(BigNode::new(children_hashes)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
fn generate_random_directory_node(
depth: u32,
max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let current_depth = depth + 1;
let is_big_dir = rng.random_bool(0.3) && current_depth < max_depth;
if !is_big_dir || current_depth >= max_depth {
// Generate a simple Directory Node (leaf level directory)
let num_entries = rng.random_range(1..=MAX_DIRECTORY_ENTRIES.min(5)); // Limit directory size for testing
let mut entries = Vec::with_capacity(num_entries);
for _ in 0..num_entries {
if rng.random_bool(0.7) {
// 70% chance of creating a file (Chunk/Big)
let file_hash = generate_random_file_node(storage)?;
let entry = DirectoryEntry {
filename: generate_random_filename(),
content_hash: file_hash,
};
entries.push(entry);
} else if current_depth < max_depth {
// 30% chance of creating a subdirectory
let dir_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
// Create a basic directory entry name
let mut filename_bytes = [0; 32];
let subdir_name = format!("dir_{}", current_depth);
filename_bytes[..subdir_name.len()].copy_from_slice(subdir_name.as_bytes());
let entry = DirectoryEntry {
filename: filename_bytes,
content_hash: dir_hash,
};
entries.push(entry);
}
}
let node = MerkleNode::Directory(DirectoryNode::new(entries)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a BigDirectory Node (internal directory structure)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(4)); // Limit children count
let mut children = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Directory or BigDirectory
let child_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
children.push(child_hash);
}
let node = MerkleNode::BigDirectory(BigDirectoryNode::new(children)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
pub fn generate_random_tree(
max_depth: u32,
) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new();
// Start tree generation from the root directory at depth 0
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage))
}
pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
let mut res = HashMap::new();
let node1 = MerkleNode::Chunk(ChunkNode::new_random());
let hash1 = hash(&node1.serialize());
let node2 = MerkleNode::Chunk(ChunkNode::new_random());
let hash2 = hash(&node2.serialize());
res.insert(hash1, node1);
res.insert(hash2, node2);
let node3 = MerkleNode::Chunk(ChunkNode::new_random());
let hash3 = hash(&node3.serialize());
res.insert(hash3, node3);
let dir1 = MerkleNode::Directory(DirectoryNode {
entries: [DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash3,
}]
.to_vec(),
});
let hash_dir1 = hash(&dir1.serialize());
res.insert(hash_dir1, dir1);
let root = MerkleNode::Directory(DirectoryNode {
entries: [
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash1,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash2,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash_dir1,
},
]
.to_vec(),
});
let root_hash = hash(&root.serialize());
res.insert(root_hash, root);
(root_hash, res)
}

View File

@@ -1,4 +1,4 @@
use crate::{BigDirectoryNode, DirectoryEntry, DirectoryNode, MerkleNode, MerkleTree, NodeHash}; use crate::{BigDirectoryNode, DirectoryEntry, DirectoryNode, MerkleNode, NodeHash};
use sha2::{Digest, Sha256}; use sha2::{Digest, Sha256};
const CHUNK: u8 = 0; const CHUNK: u8 = 0;
@@ -11,84 +11,102 @@ pub fn parse_received_datum(
datum_length: usize, datum_length: usize,
) -> Option<([u8; 32], MerkleNode)> { ) -> Option<([u8; 32], MerkleNode)> {
let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error"); let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error");
let value = &recevied_datum[32..recevied_datum.len()]; let value = &recevied_datum[32..datum_length];
let value_slice = value.to_vec(); let value_slice = value.to_vec();
println!("valueslice: {:?}, {}", value_slice, value_slice.len());
let datum_type = value_slice[0];
match datum_type {
CHUNK => Some((
hash_name,
MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
)),
DIRECTORY => {
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..((value_slice.len() - 1) / 64) as u8 {
offset = (1 + 64 * i as usize) as usize;
println!("offset:{}, i:{}", offset, i);
let name = &value_slice[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&value_slice[offset + 32..offset + 64]);
let dp_name = String::from_utf8(name.to_vec()).expect("err");
println!("name:{}", dp_name);
// envoyer un datum request println!(
dir_entries.push(DirectoryEntry { "((value_slice.len() - 1) / 32) {} ",
filename: name.try_into().expect("incorrect size"), ((value_slice.len() - 1) / 32)
content_hash: hash, );
}); // Créer une instance de Sha256
} let mut hasher = Sha256::new();
let current = DirectoryNode::new(dir_entries); // Alimenter le hasher avec les données
match current { hasher.update(value_slice.clone());
Ok(current_node) => Some((hash_name, MerkleNode::Directory(current_node))),
Err(e) => {
println!("{}", e);
None
}
}
}
BIG => {
let mut bigdir_entries: Vec<NodeHash> = Vec::new();
let mut offset = 1 as usize;
for i in 0..((value_slice.len() - 1) / 32) as u8 {
offset = (1 + 32 * i as usize) as usize;
println!("offset:{}, i:{}", offset, i);
let hash = &value_slice[offset..offset + 32];
// envoyer un datum request // Obtention du résultat
bigdir_entries.push(hash.try_into().expect("incorrect size")); let result = hasher.finalize();
} if result.to_vec() != hash_name.to_vec() {
println!("{:?},{:?}", result.to_vec(), hash_name.to_vec());
println!("its a BIG bro"); None
Some(( } else {
println!("hashes equals!");
let datum_type = value_slice[0];
match datum_type {
CHUNK => Some((
hash_name, hash_name,
MerkleNode::Big(crate::BigNode { MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
children_hashes: bigdir_entries, )),
}), DIRECTORY => {
)) let mut dir_entries = Vec::new();
} let mut offset: usize;
BIGDIRECTORY => { for i in 0..((value_slice.len() - 1) / 64) as u8 {
let mut bigdir_entries: Vec<NodeHash> = Vec::new(); offset = (1 + 64 * i as usize) as usize;
let mut offset = 1 as usize; println!("offset:{}, i:{}", offset, i);
for i in 0..((value_slice.len() - 1) / 32) as u8 { let name = &value_slice[offset..offset + 32];
offset = (1 + 32 * i as usize) as usize; let mut hash = [0u8; 32];
println!("offset:{}, i:{}", offset, i); hash.copy_from_slice(&value_slice[offset + 32..offset + 64]);
let hash = &value_slice[offset..offset + 32]; let dp_name = String::from_utf8(name.to_vec()).expect("err");
println!("name:{}", dp_name);
// envoyer un datum request // envoyer un datum request
bigdir_entries.push(hash.try_into().expect("incorrect size")); dir_entries.push(DirectoryEntry {
} filename: name.try_into().expect("incorrect size"),
content_hash: hash,
});
}
let current = BigDirectoryNode::new(bigdir_entries); let current = DirectoryNode::new(dir_entries);
match current { match current {
Ok(current_node) => Some((hash_name, MerkleNode::BigDirectory(current_node))), Ok(current_node) => Some((hash_name, MerkleNode::Directory(current_node))),
Err(e) => { Err(e) => {
println!("{}", e); println!("{}", e);
None None
}
} }
} }
BIG => {
let mut bigdir_entries: Vec<NodeHash> = Vec::new();
let mut offset: usize;
for i in 0..((value_slice.len() - 1) / 32) as u8 {
offset = (1 + 32 * i as usize) as usize;
println!("offset:{}, i:{}", offset, i);
let hash = &value_slice[offset..offset + 32];
// envoyer un datum request
bigdir_entries.push(hash.try_into().expect("incorrect size"));
}
println!("its a BIG bro");
Some((
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: bigdir_entries,
}),
))
}
BIGDIRECTORY => {
let mut bigdir_entries: Vec<NodeHash> = Vec::new();
let mut offset: usize;
for i in 0..((value_slice.len() - 1) / 32) as u8 {
offset = (1 + 32 * i as usize) as usize;
println!("offset:{}, i:{}", offset, i);
let hash = &value_slice[offset..offset + 32];
// envoyer un datum request
bigdir_entries.push(hash.try_into().expect("incorrect size"));
}
let current = BigDirectoryNode::new(bigdir_entries);
match current {
Ok(current_node) => Some((hash_name, MerkleNode::BigDirectory(current_node))),
Err(e) => {
println!("{}", e);
None
}
}
}
_ => None,
} }
_ => None,
} }
} }

View File

@@ -1,6 +1,5 @@
mod cryptographic_signature; mod cryptographic_signature;
mod data; mod data;
mod datum_generation;
mod datum_parsing; mod datum_parsing;
mod fetchsocketaddresserror; mod fetchsocketaddresserror;
mod message_handling; mod message_handling;
@@ -21,18 +20,16 @@ use crate::{
message_handling::EventType, message_handling::EventType,
messages_channels::{MultipleSenders, start_receving_thread, start_retry_thread}, messages_channels::{MultipleSenders, start_receving_thread, start_retry_thread},
messages_structure::{ messages_structure::{
DATUM, DATUMREQUEST, NATTRAVERSALREQUEST, NATTRAVERSALREQUEST2, NODATUM, PING, ROOTREQUEST, DATUM, DATUMREQUEST, NATTRAVERSALREQUEST, NODATUM, PING, ROOTREQUEST, construct_message,
construct_message,
}, },
peers_refresh::HandshakeHistory, peers_refresh::HandshakeHistory,
registration::{parse_addresses, perform_handshake, register_with_the_server}, registration::{parse_addresses, perform_handshake, register_with_the_server},
server_communication::{generate_id, get_peer_list}, server_communication::{generate_id, get_peer_list},
threads_handling::Worker, threads_handling::Worker,
}; };
use std::collections::HashSet;
use std::{ use std::{
io::Error, io::Error,
net::{IpAddr, Ipv4Addr, UdpSocket}, net::{IpAddr, UdpSocket},
time::Duration, time::Duration,
}; };
use std::{ use std::{
@@ -73,7 +70,13 @@ impl P2PSharedData {
let mut threads = Vec::new(); let mut threads = Vec::new();
let senders = MultipleSenders::new(1, &shared_socket, cmd_tx, &mut threads); let senders = MultipleSenders::new(
5,
&shared_socket,
cmd_tx,
&mut threads,
shared_messageslist.clone(),
);
let shared_senders = Arc::new(senders); let shared_senders = Arc::new(senders);
let server_name = Arc::new(Mutex::new("".to_string())); let server_name = Arc::new(Mutex::new("".to_string()));
let server_address = Arc::new(Mutex::new("".to_string())); let server_address = Arc::new(Mutex::new("".to_string()));
@@ -215,17 +218,12 @@ use crossbeam_channel::{Receiver, Sender};
use sha2::{Digest, Sha256}; use sha2::{Digest, Sha256};
pub fn calculate_chunk_id(data: &[u8]) -> String { pub fn calculate_chunk_id(data: &[u8]) -> String {
// 1. Create a new Sha256 hasher instance
let mut hasher = Sha256::new(); let mut hasher = Sha256::new();
// 2. Write the input data into the hasher
hasher.update(data); hasher.update(data);
// 3. Finalize the hash computation and get the resulting bytes
let hash_bytes = hasher.finalize(); let hash_bytes = hasher.finalize();
// 4. Convert the hash bytes (array of u8) into a hexadecimal string
// This is the common, human-readable format for cryptographic IDs.
hex::encode(hash_bytes) hex::encode(hash_bytes)
} }
@@ -234,15 +232,11 @@ pub fn start_p2p_executor(
event_tx: Sender<NetworkEvent>, event_tx: Sender<NetworkEvent>,
mut shared_data: Option<P2PSharedData>, mut shared_data: Option<P2PSharedData>,
) -> tokio::task::JoinHandle<()> { ) -> tokio::task::JoinHandle<()> {
// Use tokio to spawn the asynchronous networking logic
tokio::task::spawn(async move { tokio::task::spawn(async move {
// P2P/Networking Setup goes here
println!("Network executor started."); println!("Network executor started.");
// Main network loop // Main network loop
loop { loop {
// Check for commands from the GUI
if let Ok(cmd) = cmd_rx.try_recv() { if let Ok(cmd) = cmd_rx.try_recv() {
match cmd { match cmd {
NetworkCommand::InitDownload(hash, ip, name) => { NetworkCommand::InitDownload(hash, ip, name) => {
@@ -268,12 +262,8 @@ pub fn start_p2p_executor(
None => {} None => {}
Some(resp_msg) => { Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg); println!("msg_sent:{:?}", resp_msg);
sd.senders_ref().send_dispatch( sd.senders_ref()
resp_msg, .send_dispatch(resp_msg, addr.clone(), false);
addr.clone(),
false,
sd.messages_list(),
);
} }
} }
} }
@@ -290,12 +280,8 @@ pub fn start_p2p_executor(
None => {} None => {}
Some(resp_msg) => { Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg); println!("msg_sent:{:?}", resp_msg);
sd.senders_ref().send_dispatch( sd.senders_ref()
resp_msg, .send_dispatch(resp_msg, addr.clone(), false);
addr.clone(),
false,
sd.messages_list(),
);
} }
} }
} }
@@ -313,12 +299,8 @@ pub fn start_p2p_executor(
None => {} None => {}
Some(resp_msg) => { Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg); println!("msg_sent:{:?}", resp_msg);
sd.senders_ref().send_dispatch( sd.senders_ref()
resp_msg, .send_dispatch(resp_msg, addr.clone(), false);
addr.clone(),
false,
sd.messages_list(),
);
} }
} }
} }
@@ -390,17 +372,14 @@ pub fn start_p2p_executor(
println!("no shared data"); println!("no shared data");
} }
} }
NetworkCommand::ConnectPeer((username, connected)) => { NetworkCommand::ConnectPeer((username, _)) => {
println!("[Network] ConnectPeer() called"); println!("[Network] ConnectPeer() called");
println!("[Network] Attempting to connect to: {}", username); println!("[Network] Attempting to connect to: {}", username);
// Network logic to connect...
// If successful, send an event back:
// event_tx.send(NetworkEvent::PeerConnected(addr)).unwrap();
} }
NetworkCommand::RequestFileTree(_) => { NetworkCommand::RequestFileTree(_) => {
println!("[Network] RequestFileTree() called"); println!("[Network] RequestFileTree() called");
} }
NetworkCommand::Discover(username, hash, ip) => { NetworkCommand::Discover(username, _, ip) => {
// envoie un handshake au peer, puis un root request // envoie un handshake au peer, puis un root request
if let Some(sd) = shared_data.as_ref() { if let Some(sd) = shared_data.as_ref() {
let res = sd let res = sd
@@ -433,7 +412,6 @@ pub fn start_p2p_executor(
resp_msg, resp_msg,
peerinfo.ip.to_string(), peerinfo.ip.to_string(),
false, false,
sd.messages_list(),
); );
} }
} }
@@ -497,12 +475,7 @@ pub fn start_p2p_executor(
false, false,
); );
sd.senders_ref().send_dispatch( sd.senders_ref().send_dispatch(resp_msg, ip.clone(), false);
resp_msg,
ip.clone(),
false,
sd.messages_list(),
);
} }
} }
} }
@@ -523,9 +496,18 @@ pub fn start_p2p_executor(
Err(e) => { Err(e) => {
let mut err_msg = String::from("failed to initialize socket: "); let mut err_msg = String::from("failed to initialize socket: ");
err_msg += &e.to_string(); err_msg += &e.to_string();
let res = match event_tx.send(NetworkEvent::Error(err_msg, name.to_owned())) {
event_tx.send(NetworkEvent::Error(err_msg, name.to_owned())); Ok(_) => {}
let res = event_tx.send(NetworkEvent::Disconnected()); Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
match event_tx.send(NetworkEvent::Disconnected()) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
None None
} }
}; };
@@ -534,33 +516,41 @@ pub fn start_p2p_executor(
if let Err(e) = register_with_the_server(&sd.cryptopair(), &ip).await { if let Err(e) = register_with_the_server(&sd.cryptopair(), &ip).await {
let mut err_msg = String::from("request failed: "); let mut err_msg = String::from("request failed: ");
err_msg += &e.to_string(); err_msg += &e.to_string();
let res = match event_tx.send(NetworkEvent::Error(err_msg, name.to_owned())) {
event_tx.send(NetworkEvent::Error(err_msg, name.to_owned())); Ok(_) => {}
let res = event_tx.send(NetworkEvent::Disconnected()); Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
match event_tx.send(NetworkEvent::Disconnected()) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
} else { } else {
let res = event_tx.send(NetworkEvent::Connected(ip)); match event_tx.send(NetworkEvent::Connected(ip)) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
println!("username created: {}", sd.cryptopair().username); println!("username created: {}", sd.cryptopair().username);
} }
//println!("ip: {}", ip);
} }
//tokio::time::sleep(std::time::Duration::from_millis(5000)).await;
/*let res = event_tx.send(NetworkEvent::Connected());
if let Some(error) = res.err() {
println!(
"[Network] Couldn't send crossbeam message to GUI: {}",
error.to_string()
);
}*/
} }
NetworkCommand::FetchPeerList(ip) => { NetworkCommand::FetchPeerList(ip) => {
println!("[Network] FetchPeerList() called"); println!("[Network] FetchPeerList() called");
if ip == "" { if ip == "" {
let res = event_tx.send(NetworkEvent::Error( match event_tx.send(NetworkEvent::Error(
"Not registered to any server".to_string(), "Not registered to any server".to_string(),
"".to_owned(), "".to_owned(),
)); )) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
} else { } else {
println!("cc"); println!("cc");
match get_peer_list(ip).await { match get_peer_list(ip).await {
@@ -685,7 +675,6 @@ pub fn start_p2p_executor(
), ),
server_addr.to_string(), server_addr.to_string(),
false, false,
sd.messages_list(),
); );
} }
Err(err_msg) => { Err(err_msg) => {
@@ -704,12 +693,6 @@ pub fn start_p2p_executor(
} }
} }
// 2. Poll network for new events (e.g., an incoming connection)
// ...
// When a new peer is found:
// event_tx.send(NetworkEvent::PeerConnected("NewPeerID".to_string())).unwrap();
// Avoid spinning too fast
sleep(std::time::Duration::from_millis(50)).await; sleep(std::time::Duration::from_millis(50)).await;
} }
}) })
@@ -724,22 +707,6 @@ fn socket_addr_to_vec(addr: SocketAddr) -> Vec<u8> {
v v
} }
fn parse_pack(s: &str) -> Option<[u8; 6]> {
// split into "ip" and "port"
let mut parts = s.rsplitn(2, ':');
let port_str = parts.next()?;
let ip_str = parts.next()?; // if missing, invalid
let ip: Ipv4Addr = ip_str.parse().ok()?;
let port: u16 = port_str.parse().ok()?;
let octets = ip.octets();
let port_be = port.to_be_bytes();
Some([
octets[0], octets[1], octets[2], octets[3], port_be[0], port_be[1],
])
}
async fn quick_ping(addr: &SocketAddr, timeout_ms: u64, sd: &P2PSharedData) -> bool { async fn quick_ping(addr: &SocketAddr, timeout_ms: u64, sd: &P2PSharedData) -> bool {
let id = generate_id(); let id = generate_id();
let pingreq = construct_message(PING, Vec::new(), id, &sd.shared_cryptopair); let pingreq = construct_message(PING, Vec::new(), id, &sd.shared_cryptopair);
@@ -747,7 +714,7 @@ async fn quick_ping(addr: &SocketAddr, timeout_ms: u64, sd: &P2PSharedData) -> b
if let Some(ping) = pingreq { if let Some(ping) = pingreq {
sd.add_message(id, EventType::Ping); sd.add_message(id, EventType::Ping);
sd.senders_ref() sd.senders_ref()
.send_dispatch(ping, addr.to_string(), false, sd.messages_list()); .send_dispatch(ping, addr.to_string(), false);
} }
sleep(Duration::from_millis(timeout_ms)).await; sleep(Duration::from_millis(timeout_ms)).await;
@@ -766,7 +733,6 @@ async fn quick_ping(addr: &SocketAddr, timeout_ms: u64, sd: &P2PSharedData) -> b
/// ///
/// sends a get request to the server to get the socket address of the given peer /// sends a get request to the server to get the socket address of the given peer
/// ///
pub async fn get_socket_address( pub async fn get_socket_address(
username: String, username: String,
ip: String, ip: String,
@@ -828,7 +794,7 @@ pub async fn get_socket_address(
for addr in addresses { for addr in addresses {
println!("trying address : {}", addr); println!("trying address : {}", addr);
if quick_ping(&addr, 5000, sd).await { if quick_ping(&addr, 1000, sd).await {
return Ok(addr); return Ok(addr);
} }
@@ -842,10 +808,9 @@ pub async fn get_socket_address(
natreq.expect("couldnt construct message nattraversalrequest2"), natreq.expect("couldnt construct message nattraversalrequest2"),
sd.serveraddress().to_string(), sd.serveraddress().to_string(),
false, false,
sd.messages_list(),
); );
sleep(Duration::from_millis(5000)).await; sleep(Duration::from_millis(1000)).await;
let maybe_entry = { let maybe_entry = {
let guard = sd.messages_received_ref().lock().unwrap(); let guard = sd.messages_received_ref().lock().unwrap();
@@ -860,7 +825,7 @@ pub async fn get_socket_address(
} }
} }
if quick_ping(&addr, 15000, sd).await { if quick_ping(&addr, 5000, sd).await {
return Ok(addr); return Ok(addr);
} }
} }

View File

@@ -10,7 +10,6 @@ use crate::{
}; };
use std::{ use std::{
collections::HashMap, collections::HashMap,
default,
net::{Ipv4Addr, SocketAddr}, net::{Ipv4Addr, SocketAddr},
}; };
use std::{ use std::{
@@ -61,7 +60,6 @@ const ID: usize = 4;
const TYPE: usize = 5; const TYPE: usize = 5;
const LENGTH: usize = 7; const LENGTH: usize = 7;
const EXTENSIONS: usize = 4; const EXTENSIONS: usize = 4;
const SIGNATURE: usize = 64;
pub const PING: u8 = 0; pub const PING: u8 = 0;
const OK: u8 = 128; const OK: u8 = 128;
@@ -101,7 +99,6 @@ pub fn handle_recevied_message(
let length_bytes: [u8; 2] = recevied_message[TYPE..LENGTH] let length_bytes: [u8; 2] = recevied_message[TYPE..LENGTH]
.try_into() .try_into()
.expect("Taille incorrecte"); .expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes) as usize;
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
let received_name = &recevied_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize]; let received_name = &recevied_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let name = String::from_utf8(received_name.to_vec()).expect("wrong name"); let name = String::from_utf8(received_name.to_vec()).expect("wrong name");
@@ -126,12 +123,7 @@ pub fn handle_recevied_message(
None => {} None => {}
Some(resp_msg) => { Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg); println!("msg_sent:{:?}", resp_msg);
senders.send_dispatch( senders.send_dispatch(resp_msg, ip.to_string(), is_resp_to_server_handshake);
resp_msg,
ip.to_string(),
is_resp_to_server_handshake,
messages_list.clone(),
);
} }
} }
} }
@@ -149,10 +141,6 @@ pub fn parse_message(
) -> Option<Vec<u8>> { ) -> Option<Vec<u8>> {
let cmd_tx_clone = cmd_tx.clone(); let cmd_tx_clone = cmd_tx.clone();
let id_bytes: [u8; 4] = received_message[0..ID]
.try_into()
.expect("Taille incorrecte");
let msgtype = received_message[ID]; let msgtype = received_message[ID];
messages_received messages_received
@@ -269,7 +257,6 @@ pub fn parse_message(
natreq2.expect("couldnt construct message nattraversalrequest2"), natreq2.expect("couldnt construct message nattraversalrequest2"),
address, address,
false, false,
messages_list.clone(),
); );
} }
@@ -279,10 +266,6 @@ pub fn parse_message(
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
let received_address = &received_message[LENGTH..LENGTH + ilength as usize]; let received_address = &received_message[LENGTH..LENGTH + ilength as usize];
println!("received_address:{:?}", received_message);
//let addressv4 = IpAddr::V4(Ipv4Addr::from_octets(
// received_address[0..4].try_into().expect("incorrect size"),
//));
let bytes: [u8; 4] = received_address[0..4].try_into().expect("incorrect size"); let bytes: [u8; 4] = received_address[0..4].try_into().expect("incorrect size");
let addr_v4 = Ipv4Addr::from(bytes); let addr_v4 = Ipv4Addr::from(bytes);
let addressv4 = IpAddr::V4(addr_v4); let addressv4 = IpAddr::V4(addr_v4);
@@ -300,14 +283,12 @@ pub fn parse_message(
constructed_message.expect("couldnt construct message ping request"), constructed_message.expect("couldnt construct message ping request"),
ip.to_string(), ip.to_string(),
false, false,
messages_list.clone(),
); );
senders.send_dispatch( senders.send_dispatch(
pingreq.expect("couldnt construct message ping request"), pingreq.expect("couldnt construct message ping request"),
address.to_string(), address.to_string(),
false, false,
messages_list.clone(),
); );
constructed_message = None; constructed_message = None;
} }
@@ -370,14 +351,11 @@ pub fn parse_message(
// envoyer la root request // envoyer la root request
let _ = &guard.remove_entry(&id); let _ = &guard.remove_entry(&id);
println!("message {} retiré de la liste", id); println!("message {} retiré de la liste", id);
let new_id = generate_id();
let rootrequest = construct_message( let rootrequest =
ROOTREQUEST, construct_message(ROOTREQUEST, Vec::new(), new_id, crypto_pair);
Vec::new(), let _ = &guard.insert(new_id, EventType::RootRequest);
generate_id(), println!("root requesst sent");
crypto_pair,
);
//&guard.insert(, v)
return rootrequest; return rootrequest;
} }
EventType::Hello => { EventType::Hello => {
@@ -392,6 +370,7 @@ pub fn parse_message(
} }
ROOTREPLY => { ROOTREPLY => {
// recuperer le pseudo du peers ayant repondu // recuperer le pseudo du peers ayant repondu
println!("root reply received");
let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string()); let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string());
match peers_exist { match peers_exist {
Some(peerinfo) => { Some(peerinfo) => {
@@ -410,11 +389,15 @@ pub fn parse_message(
[LENGTH..(32 + LENGTH)] [LENGTH..(32 + LENGTH)]
.try_into() .try_into()
.expect("incorrect size"); .expect("incorrect size");
let res = match cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived(
cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived( peerinfo.username.clone(),
peerinfo.username.clone(), received_hash,
received_hash, )) {
)); Ok(_) => {}
Err(e) => {
println!("Network Event Error : {}", e.to_string());
}
};
println!("file tree sent"); println!("file tree sent");
// envoyer un datum // envoyer un datum
let mut payload = Vec::new(); let mut payload = Vec::new();
@@ -429,7 +412,9 @@ pub fn parse_message(
constructed_message = datumreqest; constructed_message = datumreqest;
guard.insert(new_id, EventType::DatumRequest); guard.insert(new_id, EventType::DatumRequest);
} }
_ => {} _ => {
println!("event not prensent");
}
} }
} }
None => {} None => {}
@@ -468,7 +453,6 @@ pub fn parse_message(
} }
} }
EventType::DatumRequestBig => { EventType::DatumRequestBig => {
let _ = &guard.remove_entry(&id);
println!("message {} retiré de la liste", id); println!("message {} retiré de la liste", id);
let received_length = u16::from_be_bytes( let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH] received_message[TYPE..LENGTH]
@@ -481,6 +465,7 @@ pub fn parse_message(
parse_received_datum(received_datum.to_vec(), received_length as usize); parse_received_datum(received_datum.to_vec(), received_length as usize);
match parsed_node { match parsed_node {
Some(tuple) => { Some(tuple) => {
let _ = &guard.remove_entry(&id);
let _ = cmd_tx.send(NetworkEvent::DataReceived( let _ = cmd_tx.send(NetworkEvent::DataReceived(
tuple.0, tuple.0,
tuple.1, tuple.1,
@@ -488,7 +473,9 @@ pub fn parse_message(
)); ));
println!("datareceived event sent"); println!("datareceived event sent");
} }
None => {} None => {
println!("message corrompu, nouvelle tentative");
}
} }
} }
_ => {} _ => {}

View File

@@ -1,26 +1,20 @@
use crossbeam_channel::Receiver; use crossbeam_channel::Receiver;
use tokio::sync::oneshot;
use tokio::time::sleep;
use crate::P2PSharedData; use crate::P2PSharedData;
use crate::message_handling::EventType; use crate::message_handling::EventType;
use crate::message_handling::handle_recevied_message; use crate::message_handling::handle_recevied_message;
use crate::peers_refresh::HandshakeHistory; use crate::peers_refresh::HandshakeHistory;
use crate::threads_handling::Worker; use crate::threads_handling::Worker;
use std::clone; use std::collections::HashMap;
use std::collections::{HashMap, HashSet};
use std::hash::Hash;
use std::net::SocketAddr;
use std::net::UdpSocket; use std::net::UdpSocket;
use std::sync::{Arc, Mutex}; use std::sync::{Arc, Mutex};
use std::sync::mpsc::{self, Sender};
use std::thread; use std::thread;
use std::collections::VecDeque; use std::collections::VecDeque;
use std::time::Duration;
use std::time::SystemTime; use std::time::SystemTime;
use std::time::UNIX_EPOCH; use std::time::UNIX_EPOCH;
use std::time::{Duration, Instant};
use crate::NetworkEvent; use crate::NetworkEvent;
@@ -38,10 +32,8 @@ struct RetryMessage {
pub struct MultipleSenders { pub struct MultipleSenders {
sender: crossbeam_channel::Sender<Message>, sender: crossbeam_channel::Sender<Message>,
receiver: crossbeam_channel::Receiver<Message>,
response_channel: crossbeam_channel::Sender<NetworkEvent>, response_channel: crossbeam_channel::Sender<NetworkEvent>,
retry_queue: Arc<Mutex<VecDeque<RetryMessage>>>, retry_queue: Arc<Mutex<VecDeque<RetryMessage>>>,
completed_messages: HashSet<i32>,
} }
impl MultipleSenders { impl MultipleSenders {
@@ -50,6 +42,7 @@ impl MultipleSenders {
socket: &Arc<UdpSocket>, socket: &Arc<UdpSocket>,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
threads: &mut Vec<Worker>, threads: &mut Vec<Worker>,
messages_list: Arc<Mutex<HashMap<i32, EventType>>>,
) -> Self { ) -> Self {
let (tx1, rx1) = crossbeam_channel::unbounded(); let (tx1, rx1) = crossbeam_channel::unbounded();
@@ -57,18 +50,22 @@ impl MultipleSenders {
let sock_clone = Arc::clone(&socket); let sock_clone = Arc::clone(&socket);
let cmd_tx_clone = cmd_tx.clone(); let cmd_tx_clone = cmd_tx.clone();
let rx: Receiver<Message> = rx1.clone(); let rx: Receiver<Message> = rx1.clone();
let msg_list_clone = messages_list.clone();
let thread = thread::spawn(move || { let thread = thread::spawn(move || {
println!("Canal d'envoi {} prêt", i); println!("Canal d'envoi {} prêt", i);
loop { loop {
// Priorité aux messages en attente prêts à être réessayés
// Si aucun retry prêt, on bloque sur rx avec timeout court, pour pouvoir traiter les timers
let msg = rx.recv().unwrap(); let msg = rx.recv().unwrap();
match sock_clone.send_to(&msg.payload, &msg.address) { match sock_clone.send_to(&msg.payload, &msg.address) {
Ok(_) => { Ok(_) => {
if msg.is_resp_to_server_handshake { if msg.is_resp_to_server_handshake {
let res = cmd_tx_clone.send(NetworkEvent::ConnectedHandshake()); match cmd_tx_clone.send(NetworkEvent::ConnectedHandshake()) {
Ok(_) => {}
Err(e) => {
println!("Network Event Error : {}", e.to_string());
}
};
} }
let message_id: [u8; 4] = let message_id: [u8; 4] =
msg.payload[0..4].try_into().expect("size error"); msg.payload[0..4].try_into().expect("size error");
@@ -84,61 +81,33 @@ impl MultipleSenders {
"Erreur d'envoi initial sur canal {}: {}, address: {}", "Erreur d'envoi initial sur canal {}: {}, address: {}",
i, e, &msg.address i, e, &msg.address
); );
let mut guard = msg_list_clone.lock().unwrap();
let message_id: [u8; 4] =
msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
guard.remove_entry(&id);
drop(guard);
} }
} }
} }
}); });
threads.push(Worker::spawn( threads.push(Worker::spawn(thread));
thread,
crate::threads_handling::WorkerType::MSGSENDER,
));
} }
MultipleSenders { MultipleSenders {
sender: tx1, sender: tx1,
receiver: rx1,
response_channel: cmd_tx.clone(), response_channel: cmd_tx.clone(),
retry_queue: Arc::new(Mutex::new(VecDeque::new())), retry_queue: Arc::new(Mutex::new(VecDeque::new())),
completed_messages: HashSet::new(),
} }
} }
/*
/// Envoie un message via un canal spécifique (round-robin ou index précis)
pub fn send_via(
&self,
channel_idx: usize,
data: Vec<u8>,
remote_addr: String,
is_resp_to_server_handshake: bool,
messages_list: &Mutex<HashMap<i32, EventType>>,
) {
println!(
"is_resp_to_server_handshake {}",
is_resp_to_server_handshake
);
let msg_to_send = Message {
payload: data.clone(),
address: remote_addr,
is_resp_to_server_handshake,
};
if let Some(sender) = self.senders.get(channel_idx) {
let _ = sender.send(msg_to_send);
}
if !is_resp_to_server_handshake {
let mut guard = messages_list.lock().unwrap();
let message_id: [u8; 4] = data[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
guard.insert(id, EventType::SendRootRequest);
}
}*/
pub fn send_dispatch( pub fn send_dispatch(
&self, &self,
data: Vec<u8>, data: Vec<u8>,
remote_addr: String, remote_addr: String,
is_resp_to_server_handshake: bool, is_resp_to_server_handshake: bool,
messages_list: Arc<Mutex<HashMap<i32, EventType>>>,
) { ) {
let msg_to_send = Message { let msg_to_send = Message {
payload: data.clone(), payload: data.clone(),
@@ -199,8 +168,7 @@ pub fn start_retry_thread(
if guard.contains_key(&id) { if guard.contains_key(&id) {
drop(guard); drop(guard);
// si le message est n'a pas encore a etre traité, on le
// remet en queue de liste
if front.next_try if front.next_try
<= SystemTime::now() <= SystemTime::now()
.duration_since(UNIX_EPOCH) .duration_since(UNIX_EPOCH)
@@ -215,9 +183,15 @@ pub fn start_retry_thread(
); );
println!("{}", str); println!("{}", str);
if front.msg.is_resp_to_server_handshake { if front.msg.is_resp_to_server_handshake {
let res = senders match senders
.response_channel .response_channel
.send(NetworkEvent::ServerHandshakeFailed(str)); .send(NetworkEvent::ServerHandshakeFailed(str))
{
Ok(_) => {}
Err(e) => {
println!("Network Event Error : {}", e.to_string());
}
};
} }
} else { } else {
let str = format!( let str = format!(
@@ -230,11 +204,11 @@ pub fn start_retry_thread(
front.msg.payload.clone(), front.msg.payload.clone(),
front.msg.address.clone(), front.msg.address.clone(),
front.msg.is_resp_to_server_handshake, front.msg.is_resp_to_server_handshake,
messages_list.clone(),
); );
let base: u64 = 2; let base: u64 = 2;
let backoff = base.saturating_pow(attempt as u32); // 2^1 == 2 seconds let backoff = base.saturating_pow(attempt as u32); // 2^1 == 2 seconds
//let backoff = 1;
let newretry = RetryMessage { let newretry = RetryMessage {
next_try: SystemTime::now() next_try: SystemTime::now()
.duration_since(UNIX_EPOCH) .duration_since(UNIX_EPOCH)
@@ -245,19 +219,16 @@ pub fn start_retry_thread(
attempts: attempt, attempts: attempt,
}; };
q.push_back(newretry); // remettre en tête pour réessayer plus tôt q.push_back(newretry);
} }
} else { } else {
q.push_back(front); // remettre en tête pour réessayer plus tôt q.push_back(front);
} }
} }
} }
} }
}); });
threads.push(Worker::spawn( threads.push(Worker::spawn(thread));
thread,
crate::threads_handling::WorkerType::MSGRETRY,
));
} }
pub fn start_receving_thread( pub fn start_receving_thread(
@@ -272,13 +243,13 @@ pub fn start_receving_thread(
let messages_received_clone = shared_data.messages_received(); let messages_received_clone = shared_data.messages_received();
let servername_clone = shared_data.servername(); let servername_clone = shared_data.servername();
let thread = thread::spawn(move || { let thread = thread::spawn(move || {
let mut buf = [0u8; 1024]; let mut buf = [0u8; 1500];
loop { loop {
match sock_clone.recv_from(&mut buf) { match sock_clone.recv_from(&mut buf) {
Ok((amt, src)) => { Ok((amt, src)) => {
let received_data = buf[..amt].to_vec(); let received_data = buf[..amt].to_vec();
println!("Reçu {} octets de {}: {:?}", amt, src, received_data); println!("Reçu {} octets de {}", amt, src);
handle_recevied_message( handle_recevied_message(
&messages_clone, &messages_clone,
&messages_received_clone, &messages_received_clone,
@@ -295,8 +266,5 @@ pub fn start_receving_thread(
} }
} }
}); });
shared_data.threads.push(Worker::spawn( shared_data.threads.push(Worker::spawn(thread));
thread,
crate::threads_handling::WorkerType::MSGRECEPTION,
));
} }

View File

@@ -1,3 +1,4 @@
#![allow(unused)]
use crate::cryptographic_signature::{CryptographicSignature, sign_message}; use crate::cryptographic_signature::{CryptographicSignature, sign_message};
const ID: usize = 4; const ID: usize = 4;
@@ -163,7 +164,7 @@ impl HandshakeMessage {
} }
} }
pub fn helloReply(id: u32, length: u16, username: String) -> HandshakeMessage { pub fn hello_reply(id: u32, length: u16, username: String) -> HandshakeMessage {
let name_vec = username.trim_end_matches(char::from(0)).as_bytes().to_vec(); let name_vec = username.trim_end_matches(char::from(0)).as_bytes().to_vec();
HandshakeMessage { HandshakeMessage {
id: id, id: id,
@@ -219,28 +220,3 @@ impl HandshakeMessage {
} }
} }
} }
#[cfg(test)]
mod tests {
// Note this useful idiom: importing names from outer (for mod tests) scope.
use super::*;
/*
/// creates an handshake message
#[tokio::test]
async fn creating_handshake_msg() {
let username = String::from("charlie_kirk");
let handshake = HandshakeMessage::hello(0, 12, username);
handshake.display();
}
/// parses an handshake message
#[tokio::test]
async fn parse_handshakemessage() {
let username = String::from("charlie_kirk");
let handshake = HandshakeMessage::hello(0, 12, username);
let ser = handshake.serialize();
let parsed = HandshakeMessage::parse(ser);
handshake.display();
parsed.display();
}*/
}

View File

@@ -4,24 +4,18 @@
pub use crate::message_handling::*; pub use crate::message_handling::*;
use std::{ use std::{
collections::{HashMap, VecDeque}, collections::HashMap,
net::{AddrParseError, Ipv4Addr, SocketAddr}, net::SocketAddr,
ops::Add,
process::Command,
sync::{Arc, Mutex}, sync::{Arc, Mutex},
thread::{self, JoinHandle}, thread::{self},
time::{self, Duration, SystemTime}, time::Duration,
}; };
use crate::{construct_message, generate_id};
use crate::{ use crate::{
NetworkEvent, cryptographic_signature::CryptographicSignature, cryptographic_signature::CryptographicSignature, messages_channels::MultipleSenders,
messages_channels::MultipleSenders, threads_handling::Worker, threads_handling::Worker,
}; };
use crate::{
P2PSharedData, construct_message, generate_id, messages_structure,
registration::perform_handshake,
};
use crossbeam_channel::{Receiver, Sender};
use p256::ecdsa::VerifyingKey; use p256::ecdsa::VerifyingKey;
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
@@ -117,7 +111,7 @@ pub fn update_handshake(
let handle = thread::spawn(move || { let handle = thread::spawn(move || {
loop { loop {
let guard = map_for_thread.lock().unwrap(); let guard = map_for_thread.lock().unwrap();
for (peer, peerinfo) in guard.iter() { for (_, peerinfo) in guard.iter() {
let id = generate_id(); let id = generate_id();
let mut map = messages_list.lock().unwrap(); let mut map = messages_list.lock().unwrap();
map.insert(id, EventType::Ping); map.insert(id, EventType::Ping);
@@ -128,34 +122,12 @@ pub fn update_handshake(
peerinfo.ip.to_string(), peerinfo.ip.to_string(),
false, false,
); );
senders.send_dispatch( senders.send_dispatch(ping, peerinfo.ip.to_string(), false);
ping,
peerinfo.ip.to_string(),
false,
messages_list.clone(),
);
} }
} }
drop(guard); drop(guard);
thread::sleep(Duration::from_secs(60)); thread::sleep(Duration::from_secs(60));
} }
}); });
Worker::spawn(handle, crate::threads_handling::WorkerType::PING) Worker::spawn(handle)
}
#[cfg(test)]
mod tests {
use std::net::{IpAddr, Ipv4Addr};
use super::*;
/*#[test]
fn creating_cryptographic_signature() {
let mut hh = HandshakeHistory::new();
hh.add_new_handshake(
20,
"putain".to_string(),
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 1),
);
}*/
} }

View File

@@ -1,7 +1,6 @@
use crate::NetworkEvent; use crate::NetworkEvent;
use crate::P2PSharedData; use crate::P2PSharedData;
use crate::cryptographic_signature::CryptographicSignature; use crate::cryptographic_signature::CryptographicSignature;
use crate::get_server_address;
use crate::get_socket_address; use crate::get_socket_address;
use crate::message_handling::EventType; use crate::message_handling::EventType;
use crate::messages_structure::construct_message; use crate::messages_structure::construct_message;
@@ -105,70 +104,10 @@ pub async fn perform_handshake(
match hello_handshake { match hello_handshake {
Some(handshake_message) => { Some(handshake_message) => {
senders.send_dispatch( senders.send_dispatch(handshake_message, address, is_server_handshake.0);
handshake_message,
address,
is_server_handshake.0,
sd.messages_list(),
);
} }
None => {} None => {}
} }
//let server_addr_query = get_socket_address(username.clone(), ip.clone(), Some(sd)).await;
//match server_addr_query {
// Ok(sockaddr_bytes) => {}
// Err(err_msg) => {}
//}
/*let mut list = messages_list.lock().expect("Failed to lock messages_list");
match list.get(&id) {
Some(_) => {
list.remove(&id);
}
None => {
list.insert(id, EventType::ServerHelloReply);
}
}
println!("message sent: {}", &id);*/
// 3. Perform the insertion
/*let mut buf = [0u8; 1024];
socket.recv_from(&mut buf).expect("receive failed");
let hello_handshake_received = UDPMessage::parse(buf.to_vec());
hello_handshake_received.display();*/
//TODO
return true; return true;
} }
#[cfg(test)]
mod tests {
/*///
/// does the procedure to register with the server
///
#[tokio::test]
async fn registering_with_server() {
let username = String::from("gameixtreize");
let server_uri = String::from("https://jch.irif.fr:8443");
let crypto_pair = CryptographicSignature::new(username);
if let Err(e) = register_with_the_server(crypto_pair, server_uri).await {
eprintln!("Error during registration: {}", e);
}
}*/
/*///
/// retreives the socket address of a given peer
///
#[tokio::test]
async fn retreive_socket_addr() {
let username = String::from("ipjkndqfshjldfsjlbsdfjhhj");
match get_socket_address(username).await {
Ok(body) => {
println!("{:?}", body);
}
Err(e) => {
eprintln!("Erreur HTTP: {}", e);
}
}
}*/
}

View File

@@ -4,25 +4,16 @@ use std::sync::{
}; };
use std::thread::JoinHandle; use std::thread::JoinHandle;
pub enum WorkerType {
MSGRECEPTION,
MSGSENDER,
PING,
MSGRETRY,
}
pub struct Worker { pub struct Worker {
thread: Option<JoinHandle<()>>, thread: Option<JoinHandle<()>>,
stop: Arc<AtomicBool>, stop: Arc<AtomicBool>,
workertype: WorkerType,
} }
impl Worker { impl Worker {
pub fn spawn(thread: JoinHandle<()>, workertype: WorkerType) -> Self { pub fn spawn(thread: JoinHandle<()>) -> Self {
Worker { Worker {
stop: Arc::new(AtomicBool::new(false)), stop: Arc::new(AtomicBool::new(false)),
thread: Some(thread), thread: Some(thread),
workertype,
} }
} }