34 Commits

Author SHA1 Message Date
Tiago Batista Cardoso
3c17b5fa1f tidy 2026-01-25 16:01:11 +01:00
Tiago Batista Cardoso
600f617c85 times & readme 2026-01-25 15:22:22 +01:00
Tiago Batista Cardoso
15bfbcd0d4 code tidy 2026-01-25 14:22:20 +01:00
TIBERGHIEN corentin
55a0eb21bb dl folder fix 2026-01-25 13:22:20 +01:00
4bb5f9033b Merge pull request 'bigfix' (#5) from bigfix into master
Reviewed-on: #5
2026-01-25 02:46:52 +00:00
TIBERGHIEN corentin
b4c4f8f1be Merge remote-tracking branch 'origin' into bigfix 2026-01-25 03:46:19 +01:00
TIBERGHIEN corentin
5378474397 Merge branch 'download_progress' 2026-01-25 03:37:05 +01:00
Tiago Batista Cardoso
10b77f8635 tidy 2026-01-25 03:25:54 +01:00
TIBERGHIEN corentin
fbbd8cd640 big download fixed 2026-01-25 03:19:08 +01:00
Tiago Batista Cardoso
9ecc944857 rapport link 2026-01-25 03:18:09 +01:00
Tiago Batista Cardoso
c0708fc4b9 tidy 2026-01-25 03:17:47 +01:00
Tiago Batista Cardoso
54cd6ebc41 tidy 2026-01-25 02:16:22 +01:00
Tiago Batista Cardoso
929c386b09 magnifique 2026-01-25 01:39:15 +01:00
TIBERGHIEN corentin
cc64aa1b88 wip big 2026-01-25 01:32:28 +01:00
Tiago Batista Cardoso
2283ef5f33 progress bar 2026-01-25 01:31:22 +01:00
Tiago Batista Cardoso
61edd8cd24 [feature] server selection 2026-01-25 01:31:15 +01:00
TIBERGHIEN corentin
79f523be48 wip bigfix 2026-01-25 00:55:57 +01:00
Tiago Batista Cardoso
fc7886c94c progress bar 2026-01-25 00:54:54 +01:00
Tiago Batista Cardoso
f69629cd52 [feature] better socket address fetching logic 2026-01-25 00:02:06 +01:00
TIBERGHIEN corentin
aec686b502 fix out of boudns 2026-01-24 23:59:15 +01:00
Tiago Batista Cardoso
95c2dfe83c pretty 2026-01-24 23:04:01 +01:00
Tiago Batista Cardoso
7a1155c0bd carre 2026-01-24 22:32:01 +01:00
Tiago Batista Cardoso
a3648c2116 working 2026-01-24 20:09:36 +01:00
Tiago Batista Cardoso
f8e3e46672 decent progress 2026-01-24 19:54:00 +01:00
Tiago Batista Cardoso
9ba752641b tried 2026-01-24 19:54:00 +01:00
Tiago Batista Cardoso
5899a275a2 give up 2026-01-24 19:54:00 +01:00
Tiago Batista Cardoso
da29d67472 wip 2026-01-24 19:54:00 +01:00
Tiago Batista Cardoso
b465608797 splash 2026-01-24 19:54:00 +01:00
Tiago Batista Cardoso
732daf0578 work 2026-01-24 19:53:30 +01:00
Tiago Batista Cardoso
65447912bf temp 2026-01-24 19:52:32 +01:00
TIBERGHIEN corentin
c928d98b56 wip big download 2026-01-24 16:50:56 +01:00
TIBERGHIEN corentin
31b26e96b0 file system and file donload 2026-01-23 01:11:02 +01:00
TIBERGHIEN corentin
26fa7a833f datum parsing 2026-01-22 03:19:43 +01:00
TIBERGHIEN corentin
fb2c3310af ping deadlock 2026-01-21 23:19:29 +01:00
20 changed files with 1737 additions and 1031 deletions

3
.gitignore vendored
View File

@@ -1 +1,2 @@
/target /target
target/

BIN
README.md

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@@ -32,7 +32,7 @@ async fn main() -> eframe::Result<()> {
eframe::run_native( eframe::run_native(
"p2p-merkle client", "p2p-merkle client",
options, options,
Box::new(|cc| { Box::new(|_| {
let app = P2PClientApp::new(network_cmd_tx, network_event_rx); let app = P2PClientApp::new(network_cmd_tx, network_event_rx);
Ok(Box::new(app)) Ok(Box::new(app))
}), }),

View File

@@ -1,11 +1,6 @@
use std::io::Read;
use bytes::Bytes; use bytes::Bytes;
use p256::EncodedPoint; use p256::EncodedPoint;
use p256::ecdsa::{ use p256::ecdsa::{Signature, SigningKey, VerifyingKey, signature::Verifier};
Signature, SigningKey, VerifyingKey,
signature::{Signer, Verifier},
};
use rand_core::OsRng; use rand_core::OsRng;
use sha2::{Digest, Sha256}; use sha2::{Digest, Sha256};
@@ -37,15 +32,6 @@ impl CryptographicSignature {
} }
} }
///
/// returns a string representing the pub_key as a String
///
pub fn formatPubKey(crypto_pair: CryptographicSignature) -> String {
let encoded_point = crypto_pair.pub_key.to_encoded_point(false);
let pubkey_bytes = encoded_point.as_bytes();
hex::encode(pubkey_bytes)
}
pub async fn get_peer_key(username: &String) -> Result<VerifyingKey, reqwest::Error> { pub async fn get_peer_key(username: &String) -> Result<VerifyingKey, reqwest::Error> {
let client = reqwest::Client::new(); let client = reqwest::Client::new();
let uri = format!("https://jch.irif.fr:8443/peers/{}/key", username); let uri = format!("https://jch.irif.fr:8443/peers/{}/key", username);
@@ -126,34 +112,7 @@ pub fn sign_message(crypto_pair: &CryptographicSignature, message: &Vec<u8>) ->
signed_message signed_message
} }
Err(e) => { Err(e) => {
panic!("error"); panic!("error : {}", e);
} }
} }
} }
#[cfg(test)]
mod tests {
use super::*;
///
/// creates a cryptographic signature
///
#[test]
fn creating_cryptographic_signature() {
let username = String::from("gamixtreize");
let crypto_pair = CryptographicSignature::new(username);
let formatted_pubkey = formatPubKey(crypto_pair);
println!("pubkey : {}", formatted_pubkey);
}
/*#[test]
fn signing_message() {
let username = String::from("gamixtreize");
let crypto_pair = CryptographicSignature::new(username.clone());
let handshake = HandshakeMessage::hello(0, 12, username);
let ser = handshake.serialize();
let signed_message = sign_message(&crypto_pair, &ser);
println!("unsigned_message: {:?}", ser);
println!("signed_message: {:?}", signed_message);
}*/
}

View File

@@ -1,6 +1,9 @@
use rand::{Rng, rng}; use rand::{Rng, rng};
use sha2::{Digest, Sha256};
use std::collections::HashMap; use std::collections::HashMap;
use std::hash::{DefaultHasher, Hash, Hasher};
use std::fs::{File, OpenOptions, create_dir};
use std::io::Write;
// --- Constants --- // --- Constants ---
pub const MAX_CHUNK_DATA_SIZE: usize = 1024; pub const MAX_CHUNK_DATA_SIZE: usize = 1024;
@@ -24,9 +27,9 @@ pub enum MerkleNode {
// 0 to 16 directory entries. // 0 to 16 directory entries.
Directory(DirectoryNode) = 1, Directory(DirectoryNode) = 1,
// list of 2 to 32 hashes pointing to Chunk or Big nodes. // list of 2 to 32 hashes pointing to Chunk or Big nodes.
Big(BigNode) = 3, Big(BigNode) = 2,
// list of 2 to 32 hashes pointing to Directory or BigDirectory nodes. // list of 2 to 32 hashes pointing to Directory or BigDirectory nodes.
BigDirectory(BigDirectoryNode) = 4, BigDirectory(BigDirectoryNode) = 3,
} }
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
@@ -39,6 +42,9 @@ impl MerkleTree {
pub fn new(data: HashMap<NodeHash, MerkleNode>, root: NodeHash) -> MerkleTree { pub fn new(data: HashMap<NodeHash, MerkleNode>, root: NodeHash) -> MerkleTree {
MerkleTree { data, root } MerkleTree { data, root }
} }
pub fn clear_data(&mut self) {
self.data.clear();
}
} }
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
@@ -56,18 +62,12 @@ impl ChunkNode {
pub fn new_random() -> Self { pub fn new_random() -> Self {
let mut rng = rand::rng(); let mut rng = rand::rng();
// Determine a random length between 1 and MAX_CHUNK_DATA_SIZE (inclusive).
// Using +1 ensures the range is up to 1024.
let random_len = rng.random_range(1..=MAX_CHUNK_DATA_SIZE); let random_len = rng.random_range(1..=MAX_CHUNK_DATA_SIZE);
// Initialize a vector with the random length
let mut data = vec![0u8; random_len]; let mut data = vec![0u8; random_len];
// Fill the vector with random bytes
rng.fill(&mut data[..]); rng.fill(&mut data[..]);
// Since we generated the length based on MAX_CHUNK_DATA_SIZE,
// this is guaranteed to be valid and doesn't need to return a Result.
ChunkNode { data } ChunkNode { data }
} }
} }
@@ -143,8 +143,8 @@ impl MerkleNode {
match self { match self {
MerkleNode::Chunk(_) => 0, MerkleNode::Chunk(_) => 0,
MerkleNode::Directory(_) => 1, MerkleNode::Directory(_) => 1,
MerkleNode::Big(_) => 3, MerkleNode::Big(_) => 2,
MerkleNode::BigDirectory(_) => 4, MerkleNode::BigDirectory(_) => 3,
} }
} }
@@ -176,3 +176,291 @@ impl MerkleNode {
bytes bytes
} }
} }
fn hash(data: &[u8]) -> NodeHash {
let root_hash = Sha256::digest(&data);
println!("root hash: {:?}", root_hash);
let res: NodeHash = root_hash.try_into().expect("incorrect size");
res
}
fn generate_random_filename() -> [u8; FILENAME_HASH_SIZE] {
let mut rng = rand::rng();
let mut filename_bytes = [0; FILENAME_HASH_SIZE];
// Generate a random length for the base name
let name_len = rng.random_range(5..21);
// Generate random alphanumeric characters
for i in 0..name_len {
let char_code = rng.random_range(97..123); // 'a' through 'z'
if i < FILENAME_HASH_SIZE {
filename_bytes[i] = char_code as u8;
}
}
// Append a common extension
let ext = if rng.random_bool(0.5) { ".txt" } else { ".dat" };
let ext_bytes = ext.as_bytes();
let start_index = name_len.min(FILENAME_HASH_SIZE - ext_bytes.len());
if start_index < FILENAME_HASH_SIZE {
filename_bytes[start_index..(start_index + ext_bytes.len())].copy_from_slice(ext_bytes);
}
filename_bytes
}
fn generate_random_file_node(
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let is_big = rng.random_bool(0.2); // 20% chance of being a big file
if !is_big {
// Generate a simple Chunk Node
let node = MerkleNode::Chunk(ChunkNode::new_random());
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a Big Node (a file composed of chunks)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(8)); // Limit complexity
let mut children_hashes = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Chunk or Big; for simplicity, we only generate Chunk children here.
let chunk_node = MerkleNode::Chunk(ChunkNode::new_random());
let chunk_hash = hash(&chunk_node.serialize());
storage.insert(chunk_hash, chunk_node);
children_hashes.push(chunk_hash);
}
let node = MerkleNode::Big(BigNode::new(children_hashes)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
fn generate_random_directory_node(
depth: u32,
max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let current_depth = depth + 1;
let is_big_dir = rng.random_bool(0.3) && current_depth < max_depth;
if !is_big_dir || current_depth >= max_depth {
// Generate a simple Directory Node (leaf level directory)
let num_entries = rng.random_range(1..=MAX_DIRECTORY_ENTRIES.min(5)); // Limit directory size for testing
let mut entries = Vec::with_capacity(num_entries);
for _ in 0..num_entries {
if rng.random_bool(0.7) {
// 70% chance of creating a file (Chunk/Big)
let file_hash = generate_random_file_node(storage)?;
let entry = DirectoryEntry {
filename: generate_random_filename(),
content_hash: file_hash,
};
entries.push(entry);
} else if current_depth < max_depth {
// 30% chance of creating a subdirectory
let dir_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
// Create a basic directory entry name
let mut filename_bytes = [0; 32];
let subdir_name = format!("dir_{}", current_depth);
filename_bytes[..subdir_name.len()].copy_from_slice(subdir_name.as_bytes());
let entry = DirectoryEntry {
filename: filename_bytes,
content_hash: dir_hash,
};
entries.push(entry);
}
}
let node = MerkleNode::Directory(DirectoryNode::new(entries)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a BigDirectory Node (internal directory structure)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(4)); // Limit children count
let mut children = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Directory or BigDirectory
let child_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
children.push(child_hash);
}
let node = MerkleNode::BigDirectory(BigDirectoryNode::new(children)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
pub fn generate_random_tree(
max_depth: u32,
) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new();
// Start tree generation from the root directory at depth 0
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage))
}
pub fn generate_base_tree() -> MerkleTree {
let mut res = HashMap::new();
let bob_content = "where is bob".to_string().into_bytes();
let alice_content = "alice".to_string().into_bytes();
let oscar_content = "oscar is the opponent".to_string().into_bytes();
let mut children_nodes = Vec::new();
for _ in 0..10 {
let mut i_nodes = Vec::new();
for _ in 0..10 {
let node1 = MerkleNode::Chunk(ChunkNode::new(bob_content.clone()).unwrap());
let hash = hash(&node1.serialize());
i_nodes.push(hash);
res.insert(hash, node1);
}
let bignode = MerkleNode::Big(BigNode::new(i_nodes).unwrap());
let hashbig = hash(&bignode.serialize());
children_nodes.push(hashbig);
res.insert(hashbig, bignode);
}
let bignode = MerkleNode::Big(BigNode::new(children_nodes).unwrap());
let hashbig = hash(&bignode.serialize());
let node1 = MerkleNode::Chunk(ChunkNode::new(bob_content).unwrap());
let hash1 = hash(&node1.serialize());
let node2 = MerkleNode::Chunk(ChunkNode::new(alice_content).unwrap());
let hash2 = hash(&node2.serialize());
res.insert(hash1, node1);
res.insert(hash2, node2);
res.insert(hashbig, bignode);
let node3 = MerkleNode::Chunk(ChunkNode::new(oscar_content).unwrap());
let hash3 = hash(&node3.serialize());
res.insert(hash3, node3);
let dir1 = MerkleNode::Directory(DirectoryNode {
entries: [DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash3,
}]
.to_vec(),
});
let hash_dir1 = hash(&dir1.serialize());
res.insert(hash_dir1, dir1);
let root = MerkleNode::Directory(DirectoryNode {
entries: [
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hashbig,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash2,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash_dir1,
},
]
.to_vec(),
});
let root_hash = Sha256::digest(&root.serialize());
println!("root hash: {:?}", root_hash);
res.insert(root_hash.try_into().expect("incorrect size"), root);
MerkleTree::new(res, root_hash.try_into().expect("incorrect size"))
}
pub fn node_to_file(tree: &MerkleTree, node: &MerkleNode, path: String, i: u8) {
match node.clone() {
MerkleNode::Directory(dir) => {
if i != 0 {
let new_path = format!("{}/fold_{}", path.clone(), i);
match create_dir(new_path.clone()) {
Ok(_) => println!("Directory created successfully!"),
Err(e) => println!("Failed to create directory: {}", e),
}
}
for entry in dir.entries {
// creer un fichier pour chaque entry
if let Ok(filename_str) = String::from_utf8(entry.filename.to_vec()) {
let new_name = format!("{}{}", path.clone(), remove_null_bytes(&filename_str));
println!("new_name: {}", new_name);
let file = OpenOptions::new()
.append(true)
.create(true)
.open(new_name.clone());
match file {
Ok(mut fileok) => {
if let Some(current) = tree.data.get(&entry.content_hash) {
big_or_chunk_to_file(&tree, &current, &mut fileok);
}
}
Err(e) => {
eprintln!("error creaation file: {}", e);
}
}
}
}
}
MerkleNode::BigDirectory(bigdir) => {
for entry in bigdir.children_hashes.iter() {
if let Some(current) = tree.data.get(entry) {
node_to_file(tree, current, path.clone(), i + 1);
}
}
}
_ => {
eprintln!("invalid type of dir");
}
}
}
pub fn remove_null_bytes(input: &str) -> String {
input.chars().filter(|&c| c != '\0').collect()
}
pub fn big_or_chunk_to_file(tree: &MerkleTree, node: &MerkleNode, file: &mut File) {
match node {
MerkleNode::Big(big) => {
for entry in big.children_hashes.iter() {
if let Some(current) = tree.data.get(entry) {
big_or_chunk_to_file(tree, current, file);
}
}
}
MerkleNode::Chunk(chunk) => {
if !chunk.data.is_empty() {
let mut data = chunk.data.clone();
data.remove(0);
let _ = file.write(&data);
} else {
println!("chunk.data is empty, nothing to write");
}
}
_ => {
println!("invalid type of file");
}
}
}

View File

@@ -1,200 +0,0 @@
use crate::data::*;
use rand::{Rng, rng};
use std::collections::HashMap;
use std::hash::{DefaultHasher, Hash, Hasher};
fn hash(data: &[u8]) -> NodeHash {
let mut hasher = DefaultHasher::new();
data.hash(&mut hasher);
let hash_u64 = hasher.finish();
let mut hash_array = [0u8; FILENAME_HASH_SIZE];
// Simple way to spread a 64-bit hash across 32 bytes for a unique-ish ID
for i in 0..8 {
hash_array[i] = (hash_u64 >> (i * 8)) as u8;
}
hash_array // The rest remains 0, satisfying the 32-byte requirement
}
fn generate_random_filename() -> [u8; FILENAME_HASH_SIZE] {
let mut rng = rand::rng();
let mut filename_bytes = [0; FILENAME_HASH_SIZE];
// Generate a random length for the base name
let name_len = rng.random_range(5..21);
// Generate random alphanumeric characters
for i in 0..name_len {
let char_code = rng.random_range(97..123); // 'a' through 'z'
if i < FILENAME_HASH_SIZE {
filename_bytes[i] = char_code as u8;
}
}
// Append a common extension
let ext = if rng.random_bool(0.5) { ".txt" } else { ".dat" };
let ext_bytes = ext.as_bytes();
let start_index = name_len.min(FILENAME_HASH_SIZE - ext_bytes.len());
if start_index < FILENAME_HASH_SIZE {
filename_bytes[start_index..(start_index + ext_bytes.len())].copy_from_slice(ext_bytes);
}
filename_bytes
}
fn generate_random_file_node(
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let is_big = rng.random_bool(0.2); // 20% chance of being a big file
if !is_big {
// Generate a simple Chunk Node
let node = MerkleNode::Chunk(ChunkNode::new_random());
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a Big Node (a file composed of chunks)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(8)); // Limit complexity
let mut children_hashes = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Chunk or Big; for simplicity, we only generate Chunk children here.
let chunk_node = MerkleNode::Chunk(ChunkNode::new_random());
let chunk_hash = hash(&chunk_node.serialize());
storage.insert(chunk_hash, chunk_node);
children_hashes.push(chunk_hash);
}
let node = MerkleNode::Big(BigNode::new(children_hashes)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
fn generate_random_directory_node(
depth: u32,
max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let current_depth = depth + 1;
let is_big_dir = rng.random_bool(0.3) && current_depth < max_depth;
if !is_big_dir || current_depth >= max_depth {
// Generate a simple Directory Node (leaf level directory)
let num_entries = rng.random_range(1..=MAX_DIRECTORY_ENTRIES.min(5)); // Limit directory size for testing
let mut entries = Vec::with_capacity(num_entries);
for _ in 0..num_entries {
if rng.random_bool(0.7) {
// 70% chance of creating a file (Chunk/Big)
let file_hash = generate_random_file_node(storage)?;
let entry = DirectoryEntry {
filename: generate_random_filename(),
content_hash: file_hash,
};
entries.push(entry);
} else if current_depth < max_depth {
// 30% chance of creating a subdirectory
let dir_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
// Create a basic directory entry name
let mut filename_bytes = [0; 32];
let subdir_name = format!("dir_{}", current_depth);
filename_bytes[..subdir_name.len()].copy_from_slice(subdir_name.as_bytes());
let entry = DirectoryEntry {
filename: filename_bytes,
content_hash: dir_hash,
};
entries.push(entry);
}
}
let node = MerkleNode::Directory(DirectoryNode::new(entries)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a BigDirectory Node (internal directory structure)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(4)); // Limit children count
let mut children = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Directory or BigDirectory
let child_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
children.push(child_hash);
}
let node = MerkleNode::BigDirectory(BigDirectoryNode::new(children)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
pub fn generate_random_tree(
max_depth: u32,
) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new();
// Start tree generation from the root directory at depth 0
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage))
}
pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
let mut res = HashMap::new();
let node1 = MerkleNode::Chunk(ChunkNode::new_random());
let hash1 = hash(&node1.serialize());
let node2 = MerkleNode::Chunk(ChunkNode::new_random());
let hash2 = hash(&node2.serialize());
res.insert(hash1, node1);
res.insert(hash2, node2);
let node3 = MerkleNode::Chunk(ChunkNode::new_random());
let hash3 = hash(&node3.serialize());
res.insert(hash3, node3);
let dir1 = MerkleNode::Directory(DirectoryNode {
entries: [DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash3,
}]
.to_vec(),
});
let hash_dir1 = hash(&dir1.serialize());
res.insert(hash_dir1, dir1);
let root = MerkleNode::Directory(DirectoryNode {
entries: [
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash1,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash2,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash_dir1,
},
]
.to_vec(),
});
let root_hash = hash(&root.serialize());
res.insert(root_hash, root);
(root_hash, res)
}

View File

@@ -1,4 +1,4 @@
use crate::{BigDirectoryNode, DirectoryEntry, DirectoryNode, MerkleNode, MerkleTree, NodeHash}; use crate::{BigDirectoryNode, DirectoryEntry, DirectoryNode, MerkleNode, NodeHash};
use sha2::{Digest, Sha256}; use sha2::{Digest, Sha256};
const CHUNK: u8 = 0; const CHUNK: u8 = 0;
@@ -11,78 +11,102 @@ pub fn parse_received_datum(
datum_length: usize, datum_length: usize,
) -> Option<([u8; 32], MerkleNode)> { ) -> Option<([u8; 32], MerkleNode)> {
let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error"); let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error");
let sigstart = datum_length - 64; let value = &recevied_datum[32..datum_length];
let value = &recevied_datum[32..sigstart];
let value_slice = value.to_vec(); let value_slice = value.to_vec();
let datum_type = value_slice[0];
match datum_type {
CHUNK => Some((
hash_name,
MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
)),
DIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.try_into().expect("incorrect size"),
content_hash: hash,
});
}
let current = DirectoryNode::new(dir_entries); println!(
match current { "((value_slice.len() - 1) / 32) {} ",
Ok(current_node) => Some((hash_name, MerkleNode::Directory(current_node))), ((value_slice.len() - 1) / 32)
Err(e) => { );
println!("{}", e); // Créer une instance de Sha256
None let mut hasher = Sha256::new();
// Alimenter le hasher avec les données
hasher.update(value_slice.clone());
// Obtention du résultat
let result = hasher.finalize();
if result.to_vec() != hash_name.to_vec() {
println!("{:?},{:?}", result.to_vec(), hash_name.to_vec());
None
} else {
println!("hashes equals!");
let datum_type = value_slice[0];
match datum_type {
CHUNK => Some((
hash_name,
MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
)),
DIRECTORY => {
let mut dir_entries = Vec::new();
let mut offset: usize;
for i in 0..((value_slice.len() - 1) / 64) as u8 {
offset = (1 + 64 * i as usize) as usize;
println!("offset:{}, i:{}", offset, i);
let name = &value_slice[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&value_slice[offset + 32..offset + 64]);
let dp_name = String::from_utf8(name.to_vec()).expect("err");
println!("name:{}", dp_name);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.try_into().expect("incorrect size"),
content_hash: hash,
});
}
let current = DirectoryNode::new(dir_entries);
match current {
Ok(current_node) => Some((hash_name, MerkleNode::Directory(current_node))),
Err(e) => {
println!("{}", e);
None
}
} }
} }
} BIG => {
BIG => { let mut bigdir_entries: Vec<NodeHash> = Vec::new();
let chlidren: Vec<NodeHash> = Vec::new(); let mut offset: usize;
Some(( for i in 0..((value_slice.len() - 1) / 32) as u8 {
hash_name, offset = (1 + 32 * i as usize) as usize;
MerkleNode::Big(crate::BigNode { println!("offset:{}, i:{}", offset, i);
children_hashes: chlidren, let hash = &value_slice[offset..offset + 32];
}),
))
/*let chlidren: Vec<NodeHash> = Vec::new();
tree.data.insert(
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: chlidren,
}),
);*/
}
BIGDIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(hash);
}
let current = BigDirectoryNode::new(dir_entries); // envoyer un datum request
match current { bigdir_entries.push(hash.try_into().expect("incorrect size"));
Ok(current_node) => Some((hash_name, MerkleNode::BigDirectory(current_node))), }
Err(e) => {
println!("{}", e); println!("its a BIG bro");
None Some((
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: bigdir_entries,
}),
))
}
BIGDIRECTORY => {
let mut bigdir_entries: Vec<NodeHash> = Vec::new();
let mut offset: usize;
for i in 0..((value_slice.len() - 1) / 32) as u8 {
offset = (1 + 32 * i as usize) as usize;
println!("offset:{}, i:{}", offset, i);
let hash = &value_slice[offset..offset + 32];
// envoyer un datum request
bigdir_entries.push(hash.try_into().expect("incorrect size"));
}
let current = BigDirectoryNode::new(bigdir_entries);
match current {
Ok(current_node) => Some((hash_name, MerkleNode::BigDirectory(current_node))),
Err(e) => {
println!("{}", e);
None
}
} }
} }
_ => None,
} }
_ => None,
} }
} }

View File

@@ -0,0 +1,26 @@
use std::fmt;
#[derive(Debug)]
pub enum FetchSocketAddressError {
NoIPV4Address,
NoRegisteredAddresses,
NoResponseFromUser,
ClientError(String),
}
impl fmt::Display for FetchSocketAddressError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
FetchSocketAddressError::NoIPV4Address => write!(f, "No IPv4 Address registered."),
FetchSocketAddressError::NoRegisteredAddresses => {
write!(f, "No Registered Addresses found.")
}
FetchSocketAddressError::NoResponseFromUser => {
write!(f, "No Response from user after contact.")
}
FetchSocketAddressError::ClientError(error) => {
write!(f, "Client error : {}", error)
}
}
}
}

View File

@@ -1,7 +1,7 @@
mod cryptographic_signature; mod cryptographic_signature;
mod data; mod data;
mod datum_generation;
mod datum_parsing; mod datum_parsing;
mod fetchsocketaddresserror;
mod message_handling; mod message_handling;
mod messages_channels; mod messages_channels;
mod messages_structure; mod messages_structure;
@@ -9,14 +9,18 @@ mod peers_refresh;
mod registration; mod registration;
mod server_communication; mod server_communication;
mod threads_handling; mod threads_handling;
mod timestamp;
use crate::fetchsocketaddresserror::FetchSocketAddressError;
use crate::messages_structure::ROOTREPLY;
use crate::peers_refresh::*; use crate::peers_refresh::*;
use crate::timestamp::Timestamp;
use crate::{ use crate::{
cryptographic_signature::CryptographicSignature, cryptographic_signature::CryptographicSignature,
message_handling::EventType, message_handling::EventType,
messages_channels::{MultipleSenders, start_receving_thread, start_retry_thread}, messages_channels::{MultipleSenders, start_receving_thread, start_retry_thread},
messages_structure::{ messages_structure::{
NATTRAVERSALREQUEST, NATTRAVERSALREQUEST2, PING, ROOTREQUEST, construct_message, DATUM, DATUMREQUEST, NATTRAVERSALREQUEST, NODATUM, PING, ROOTREQUEST, construct_message,
}, },
peers_refresh::HandshakeHistory, peers_refresh::HandshakeHistory,
registration::{parse_addresses, perform_handshake, register_with_the_server}, registration::{parse_addresses, perform_handshake, register_with_the_server},
@@ -24,9 +28,8 @@ use crate::{
threads_handling::Worker, threads_handling::Worker,
}; };
use std::{ use std::{
clone,
io::Error, io::Error,
net::{IpAddr, Ipv4Addr, UdpSocket}, net::{IpAddr, UdpSocket},
time::Duration, time::Duration,
}; };
use std::{ use std::{
@@ -38,15 +41,17 @@ pub struct P2PSharedData {
shared_socket: Arc<UdpSocket>, shared_socket: Arc<UdpSocket>,
shared_cryptopair: Arc<CryptographicSignature>, shared_cryptopair: Arc<CryptographicSignature>,
shared_messageslist: Arc<Mutex<HashMap<i32, EventType>>>, shared_messageslist: Arc<Mutex<HashMap<i32, EventType>>>,
shared_messagesreceived: Arc<Mutex<HashMap<String, (EventType, Timestamp)>>>,
shared_senders: Arc<MultipleSenders>, shared_senders: Arc<MultipleSenders>,
server_name: Arc<Mutex<String>>, server_name: Arc<Mutex<String>>,
server_address: Arc<Mutex<String>>,
handshake_peers: Arc<HandshakeHistory>, handshake_peers: Arc<HandshakeHistory>,
threads: Vec<Worker>, threads: Vec<Worker>,
} }
use bytes::Bytes; use bytes::Bytes;
use p256::pkcs8::der::pem::Base64Encoder;
use reqwest::Client; use reqwest::Client;
use tokio::time::sleep;
impl P2PSharedData { impl P2PSharedData {
pub fn new( pub fn new(
@@ -54,26 +59,37 @@ impl P2PSharedData {
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
) -> Result<P2PSharedData, Error> { ) -> Result<P2PSharedData, Error> {
let messages_list = HashMap::<i32, EventType>::new(); let messages_list = HashMap::<i32, EventType>::new();
let messagesrecv_list = HashMap::<String, (EventType, Timestamp)>::new();
let username = String::from(username); let username = String::from(username);
let crypto_pair = CryptographicSignature::new(username); let crypto_pair = CryptographicSignature::new(username);
let socket = UdpSocket::bind("0.0.0.0:0")?; let socket = UdpSocket::bind("0.0.0.0:0")?;
let shared_socket = Arc::new(socket); let shared_socket = Arc::new(socket);
let shared_cryptopair = Arc::new(crypto_pair); let shared_cryptopair = Arc::new(crypto_pair);
let shared_messageslist = Arc::new(Mutex::new(messages_list)); let shared_messageslist = Arc::new(Mutex::new(messages_list));
let shared_messagesreceived = Arc::new(Mutex::new(messagesrecv_list));
let mut threads = Vec::new(); let mut threads = Vec::new();
let senders = MultipleSenders::new(1, &shared_socket, cmd_tx, &mut threads); let senders = MultipleSenders::new(
5,
&shared_socket,
cmd_tx,
&mut threads,
shared_messageslist.clone(),
);
let shared_senders = Arc::new(senders); let shared_senders = Arc::new(senders);
let server_name = Arc::new(Mutex::new("".to_string())); let server_name = Arc::new(Mutex::new("".to_string()));
let server_address = Arc::new(Mutex::new("".to_string()));
let handhsake_peers = Arc::new(HandshakeHistory::new()); let handhsake_peers = Arc::new(HandshakeHistory::new());
Ok(P2PSharedData { Ok(P2PSharedData {
shared_socket: shared_socket, shared_socket: shared_socket,
shared_cryptopair: shared_cryptopair, shared_cryptopair: shared_cryptopair,
shared_messageslist: shared_messageslist, shared_messageslist: shared_messageslist,
shared_messagesreceived: shared_messagesreceived,
shared_senders: shared_senders, shared_senders: shared_senders,
server_name: server_name, server_name: server_name,
server_address: server_address,
handshake_peers: handhsake_peers, handshake_peers: handhsake_peers,
threads, threads,
}) })
@@ -88,14 +104,31 @@ impl P2PSharedData {
pub fn messages_list(&self) -> Arc<Mutex<HashMap<i32, EventType>>> { pub fn messages_list(&self) -> Arc<Mutex<HashMap<i32, EventType>>> {
self.shared_messageslist.clone() self.shared_messageslist.clone()
} }
pub fn messages_received(&self) -> Arc<Mutex<HashMap<String, (EventType, Timestamp)>>> {
self.shared_messagesreceived.clone()
}
pub fn servername(&self) -> String { pub fn servername(&self) -> String {
let guard = self.server_name.lock().unwrap(); let guard = {
let maybe_sn = self.server_name.lock().unwrap();
maybe_sn.clone()
};
guard.to_string()
}
pub fn serveraddress(&self) -> String {
let guard = {
let maybe_sn = self.server_address.lock().unwrap();
maybe_sn.clone()
};
guard.to_string() guard.to_string()
} }
pub fn set_servername(&self, new: String) { pub fn set_servername(&self, new: String) {
let mut guard = self.server_name.lock().unwrap(); let mut guard = self.server_name.lock().unwrap();
*guard = new *guard = new
} }
pub fn set_serveraddress(&self, new: String) {
let mut guard = self.server_address.lock().unwrap();
*guard = new
}
pub fn senders(&self) -> Arc<MultipleSenders> { pub fn senders(&self) -> Arc<MultipleSenders> {
self.shared_senders.clone() self.shared_senders.clone()
} }
@@ -113,6 +146,10 @@ impl P2PSharedData {
&*self.shared_messageslist &*self.shared_messageslist
} }
pub fn messages_received_ref(&self) -> &Mutex<HashMap<String, (EventType, Timestamp)>> {
&*self.shared_messagesreceived
}
pub fn senders_ref(&self) -> &MultipleSenders { pub fn senders_ref(&self) -> &MultipleSenders {
&*self.shared_senders &*self.shared_senders
} }
@@ -147,7 +184,11 @@ pub enum NetworkCommand {
Disconnect(), Disconnect(),
ResetServerPeer(), ResetServerPeer(),
Discover(String, String, String), Discover(String, String, String),
GetChildren(String, String), GetChildren([u8; 32], String, bool),
SendDatum(MerkleNode, [u8; 32], String),
SendNoDatum(Vec<u8>, String),
SendRootReply(Vec<u8>, String),
InitDownload([u8; 32], String, String),
// ... // ...
} }
@@ -156,14 +197,17 @@ pub enum NetworkEvent {
Connected(String), Connected(String),
ConnectedHandshake(), ConnectedHandshake(),
Disconnected(), Disconnected(),
Error(String), Error(String, String),
PeerConnected(String), Success(String, String),
PeerListUpdated(Vec<(String, bool)>), PeerListUpdated(Vec<(String, bool)>),
FileTreeReceived([u8; 32], MerkleNode), // peer_id, content FileTreeReceived([u8; 32], MerkleNode, String), // peer_id, content
DataReceived(String, MerkleNode), DataReceived([u8; 32], MerkleNode, String),
FileTreeRootReceived(String, NodeHash), FileTreeRootReceived(String, NodeHash),
HandshakeFailed(), HandshakeFailed(),
ServerHandshakeFailed(String), ServerHandshakeFailed(String),
DatumRequest([u8; 32], String),
RootRequest(String),
InitDownload([u8; 32], String, String),
// ... // ...
} }
@@ -174,17 +218,12 @@ use crossbeam_channel::{Receiver, Sender};
use sha2::{Digest, Sha256}; use sha2::{Digest, Sha256};
pub fn calculate_chunk_id(data: &[u8]) -> String { pub fn calculate_chunk_id(data: &[u8]) -> String {
// 1. Create a new Sha256 hasher instance
let mut hasher = Sha256::new(); let mut hasher = Sha256::new();
// 2. Write the input data into the hasher
hasher.update(data); hasher.update(data);
// 3. Finalize the hash computation and get the resulting bytes
let hash_bytes = hasher.finalize(); let hash_bytes = hasher.finalize();
// 4. Convert the hash bytes (array of u8) into a hexadecimal string
// This is the common, human-readable format for cryptographic IDs.
hex::encode(hash_bytes) hex::encode(hash_bytes)
} }
@@ -193,17 +232,79 @@ pub fn start_p2p_executor(
event_tx: Sender<NetworkEvent>, event_tx: Sender<NetworkEvent>,
mut shared_data: Option<P2PSharedData>, mut shared_data: Option<P2PSharedData>,
) -> tokio::task::JoinHandle<()> { ) -> tokio::task::JoinHandle<()> {
// Use tokio to spawn the asynchronous networking logic
tokio::task::spawn(async move { tokio::task::spawn(async move {
// P2P/Networking Setup goes here
println!("Network executor started."); println!("Network executor started.");
// Main network loop // Main network loop
loop { loop {
// Check for commands from the GUI
if let Ok(cmd) = cmd_rx.try_recv() { if let Ok(cmd) = cmd_rx.try_recv() {
match cmd { match cmd {
NetworkCommand::InitDownload(hash, ip, name) => {
if let Some(sd) = shared_data.as_ref() {
if let Some(res) = sd.handshake_peers.get_peer_info_username(ip) {
let _ = event_tx.send(NetworkEvent::InitDownload(
hash,
res.ip.to_string(),
name.to_string(),
));
}
}
}
NetworkCommand::SendRootReply(node_hash, addr) => {
if let Some(sd) = shared_data.as_mut() {
let mut payload = Vec::new();
payload.extend_from_slice(&node_hash);
let new_id = generate_id();
let message =
construct_message(ROOTREPLY, payload, new_id, sd.cryptopair_ref());
match message {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref()
.send_dispatch(resp_msg, addr.clone(), false);
}
}
}
}
NetworkCommand::SendNoDatum(node_hash, addr) => {
if let Some(sd) = shared_data.as_mut() {
let mut payload = Vec::new();
payload.extend_from_slice(&node_hash);
let new_id = generate_id();
let message =
construct_message(NODATUM, payload, new_id, sd.cryptopair_ref());
match message {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref()
.send_dispatch(resp_msg, addr.clone(), false);
}
}
}
}
NetworkCommand::SendDatum(merklennode, node_hash, addr) => {
if let Some(sd) = shared_data.as_mut() {
let mut payload = Vec::new();
payload.extend_from_slice(&node_hash);
payload.extend_from_slice(&merklennode.serialize());
let new_id = generate_id();
let message =
construct_message(DATUM, payload, new_id, sd.cryptopair_ref());
match message {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref()
.send_dispatch(resp_msg, addr.clone(), false);
}
}
}
}
NetworkCommand::ServerHandshake(username, ip) => { NetworkCommand::ServerHandshake(username, ip) => {
println!("server handshake called"); println!("server handshake called");
if let Some(sd) = shared_data.as_mut() { if let Some(sd) = shared_data.as_mut() {
@@ -218,29 +319,72 @@ pub fn start_p2p_executor(
sd.senders(), sd.senders(),
sd.cryptopair(), sd.cryptopair(),
sd.messages_list(), sd.messages_list(),
sd.handshake_peers.username_k_peerinfo_v.clone(), sd.handshake_peers.get_username_peerinfo_map(),
); );
let server_address = {
match get_server_address(username.to_owned(), ip.to_owned()).await {
Some(addr) => addr.to_string(),
None => {
match event_tx.send(NetworkEvent::Error(
"Couldn't fetch server socket address.".to_owned(),
username.to_owned(),
)) {
Ok(_) => {}
Err(e) => {
println!("Network Event Error : {}", e.to_string());
}
}
"".to_owned()
}
}
};
if server_address.to_owned().eq(&"".to_owned()) {
continue;
}
let res = sd.set_servername(username.to_owned());
perform_handshake(&sd, username, ip, event_tx.clone(), true).await; sd.set_serveraddress(server_address.to_string());
println!("SET SERVERADDRESS");
match perform_handshake(
&sd,
username.to_owned(),
ip,
event_tx.clone(),
(true, server_address.to_string()),
)
.await
{
true => {
match event_tx.send(NetworkEvent::Success(
"Handshake established ✔️".to_string(),
username.to_owned(),
)) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
}
false => {}
};
} else { } else {
println!("no shared data"); println!("no shared data");
} }
} }
NetworkCommand::ConnectPeer((username, connected)) => { NetworkCommand::ConnectPeer((username, _)) => {
println!("[Network] ConnectPeer() called"); println!("[Network] ConnectPeer() called");
println!("[Network] Attempting to connect to: {}", username); println!("[Network] Attempting to connect to: {}", username);
// Network logic to connect...
// If successful, send an event back:
// event_tx.send(NetworkEvent::PeerConnected(addr)).unwrap();
} }
NetworkCommand::RequestFileTree(_) => { NetworkCommand::RequestFileTree(_) => {
println!("[Network] RequestFileTree() called"); println!("[Network] RequestFileTree() called");
} }
NetworkCommand::Discover(username, hash, ip) => { NetworkCommand::Discover(username, _, ip) => {
// envoie un handshake au peer, puis un root request // envoie un handshake au peer, puis un root request
if let Some(sd) = shared_data.as_ref() { if let Some(sd) = shared_data.as_ref() {
let res = sd.handshake_peers.get_peer_info_username(username.clone()); let res = sd
.handshake_peers
.get_peer_info_username(username.to_owned());
match res { match res {
Some(peerinfo) => { Some(peerinfo) => {
let id = generate_id(); let id = generate_id();
@@ -268,29 +412,73 @@ pub fn start_p2p_executor(
resp_msg, resp_msg,
peerinfo.ip.to_string(), peerinfo.ip.to_string(),
false, false,
sd.messages_list(),
); );
} }
} }
} }
None => { None => {
// envoyer un handshake // envoyer un handshake
let res = perform_handshake( match perform_handshake(
&sd, &sd,
username, username.to_owned(),
ip, ip,
event_tx.clone(), event_tx.clone(),
false, (false, "".to_string()),
) )
.await; .await
{
true => {
match event_tx.send(NetworkEvent::Success(
"Handshake established ✔️".to_string(),
username.to_owned(),
)) {
Ok(_) => {}
Err(err) => {
println!(
"Network Event Error : {}",
err.to_string()
);
}
};
}
false => {}
}
} }
} }
} else { } else {
println!("no shared data"); println!("no shared data");
} }
} }
NetworkCommand::GetChildren(username, hash) => { NetworkCommand::GetChildren(hash, ip, is_file) => {
// envoie un datum request au peer if let Some(sd) = shared_data.as_ref() {
let mut payload = Vec::new();
payload.extend_from_slice(&hash);
let new_id = generate_id();
let datumreqest = construct_message(
DATUMREQUEST,
payload,
new_id,
sd.cryptopair_ref(),
);
match datumreqest {
None => {}
Some(resp_msg) => {
if is_file {
sd.add_message(new_id, EventType::DatumRequestBig);
} else {
sd.add_message(new_id, EventType::DatumRequest);
}
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref().add_message_to_retry_queue(
resp_msg.clone(),
ip.clone(),
false,
);
sd.senders_ref().send_dispatch(resp_msg, ip.clone(), false);
}
}
}
} }
NetworkCommand::RequestDirectoryContent(_, _) => { NetworkCommand::RequestDirectoryContent(_, _) => {
println!("[Network] RequestDirectoryContent() called"); println!("[Network] RequestDirectoryContent() called");
@@ -308,8 +496,18 @@ pub fn start_p2p_executor(
Err(e) => { Err(e) => {
let mut err_msg = String::from("failed to initialize socket: "); let mut err_msg = String::from("failed to initialize socket: ");
err_msg += &e.to_string(); err_msg += &e.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg)); match event_tx.send(NetworkEvent::Error(err_msg, name.to_owned())) {
let res = event_tx.send(NetworkEvent::Disconnected()); Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
match event_tx.send(NetworkEvent::Disconnected()) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
None None
} }
}; };
@@ -318,30 +516,41 @@ pub fn start_p2p_executor(
if let Err(e) = register_with_the_server(&sd.cryptopair(), &ip).await { if let Err(e) = register_with_the_server(&sd.cryptopair(), &ip).await {
let mut err_msg = String::from("request failed: "); let mut err_msg = String::from("request failed: ");
err_msg += &e.to_string(); err_msg += &e.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg)); match event_tx.send(NetworkEvent::Error(err_msg, name.to_owned())) {
let res = event_tx.send(NetworkEvent::Disconnected()); Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
match event_tx.send(NetworkEvent::Disconnected()) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
} else { } else {
let res = event_tx.send(NetworkEvent::Connected(ip)); match event_tx.send(NetworkEvent::Connected(ip)) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
println!("username created: {}", sd.cryptopair().username); println!("username created: {}", sd.cryptopair().username);
} }
//println!("ip: {}", ip);
} }
//tokio::time::sleep(std::time::Duration::from_millis(5000)).await;
/*let res = event_tx.send(NetworkEvent::Connected());
if let Some(error) = res.err() {
println!(
"[Network] Couldn't send crossbeam message to GUI: {}",
error.to_string()
);
}*/
} }
NetworkCommand::FetchPeerList(ip) => { NetworkCommand::FetchPeerList(ip) => {
println!("[Network] FetchPeerList() called");
if ip == "" { if ip == "" {
let res = event_tx.send(NetworkEvent::Error( match event_tx.send(NetworkEvent::Error(
"Not registered to any server".to_string(), "Not registered to any server".to_string(),
)); "".to_owned(),
)) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
} else { } else {
println!("cc"); println!("cc");
match get_peer_list(ip).await { match get_peer_list(ip).await {
@@ -357,58 +566,72 @@ pub fn start_p2p_executor(
current.push(i); current.push(i);
} }
} }
let res = match event_tx.send(NetworkEvent::PeerListUpdated(peers)) {
event_tx.send(NetworkEvent::PeerListUpdated(peers)); Ok(_) => {}
Err(err) => {
println!(
"Network Event Error : {}",
err.to_string()
);
}
};
} }
Err(e) => { Err(e) => {
eprintln!("invalid UTF-8 in socket address bytes: {}", e); eprintln!("invalid UTF-8 in socket address bytes: {}", e);
} }
}, },
Err(e) => println!("error"), Err(e) => println!("error : {}", e),
} }
} }
println!("[Network] FetchPeerList() called");
} }
NetworkCommand::RegisterAsPeer(_) => { NetworkCommand::RegisterAsPeer(_) => {
println!("[Network] RegisterAsPeer() called"); println!("[Network] RegisterAsPeer() called");
} }
NetworkCommand::Ping(str, ip) => { NetworkCommand::Ping(str, ip) => {
println!("[Network] Ping({}) called", str);
if let Some(sd) = shared_data.as_ref() { if let Some(sd) = shared_data.as_ref() {
let id = generate_id(); let id = generate_id();
sd.add_message(id, EventType::Ping); sd.add_message(id, EventType::Ping);
let pingrequest = let peer_address =
construct_message(PING, Vec::new(), id, sd.cryptopair_ref()); get_socket_address(str.to_owned(), ip, shared_data.as_ref()).await;
let peer_address = get_socket_address(str, ip).await;
match peer_address { match peer_address {
Some(addr) => { Ok(addr) => {
if let Some(ping) = pingrequest { match event_tx.send(NetworkEvent::Success(
sd.senders_ref().add_message_to_retry_queue( format!(
ping.clone(), "Successfully sent ping message to {}.",
addr.to_string(), addr.to_string(),
false, ),
); str.to_owned(),
sd.senders_ref().send_dispatch( )) {
ping, Ok(_) => {}
addr.to_string(), Err(e) => {
false, eprintln!("NetworkEvent error : {}", e);
sd.messages_list(), }
); };
}
} }
None => { Err(err_msg) => {
let err_msg = match event_tx
format!("failed to retreive socket address:").to_string(); .send(NetworkEvent::Error(err_msg.to_string(), str))
let res = event_tx.send(NetworkEvent::Error(err_msg)); {
Ok(_) => {}
Err(e) => {
eprintln!("NetworkEvent error : {}", e);
}
}
} }
} }
} }
println!("[Network] Ping() called");
} }
NetworkCommand::Disconnect() => { NetworkCommand::Disconnect() => {
if let Some(sd) = shared_data.as_ref() { if let Some(sd) = shared_data.as_ref() {
println!("Disconnecting: {}", &sd.cryptopair().username); println!("Disconnecting: {}", &sd.cryptopair().username);
shared_data = None; shared_data = None;
let res = event_tx.send(NetworkEvent::Disconnected()); match event_tx.send(NetworkEvent::Disconnected()) {
Ok(_) => {}
Err(e) => {
eprintln!("NetworkEvent error : {}", e);
}
}
} else { } else {
println!("no p2p data"); println!("no p2p data");
} }
@@ -424,45 +647,45 @@ pub fn start_p2p_executor(
if let Some(sd) = shared_data.as_ref() { if let Some(sd) = shared_data.as_ref() {
println!("username:{}, ip:{}", username, ip); println!("username:{}, ip:{}", username, ip);
// user server to send nattraversal request // user server to send nattraversal request
let server_addr_query = let server_addr = sd.serveraddress();
get_socket_address(sd.servername().clone(), ip.clone()); let peer_addr_query = get_socket_address(
let peer_addr_query = get_socket_address(username.clone(), ip.clone()); username.clone(),
ip.clone(),
shared_data.as_ref(),
);
match server_addr_query.await { match peer_addr_query.await {
Some(server_addr) => match peer_addr_query.await { Ok(peer_addr) => {
Some(peer_addr) => { let payload = socket_addr_to_vec(peer_addr);
let payload = socket_addr_to_vec(server_addr);
print!("{:?}", payload.clone()); print!("{:?}", payload.clone());
let id = generate_id(); let id = generate_id();
let natreq = construct_message( let natreq = construct_message(
NATTRAVERSALREQUEST, NATTRAVERSALREQUEST,
payload.clone(), payload.clone(),
id.clone(), id.clone(),
&sd.cryptopair(), &sd.cryptopair(),
); );
sd.add_message(id, EventType::NatTraversal); sd.add_message(id, EventType::NatTraversal);
sd.senders_ref().send_dispatch( sd.senders_ref().send_dispatch(
natreq.expect( natreq.expect(
"couldnt construct message nattraversalrequest2", "couldnt construct message nattraversalrequest2",
), ),
server_addr.to_string(), server_addr.to_string(),
false, false,
sd.messages_list(), );
); }
Err(err_msg) => {
match event_tx
.send(NetworkEvent::Error(err_msg.to_string(), username))
{
Ok(_) => {}
Err(e) => {
eprintln!("NetworkEvent error : {}", e);
}
} }
None => {
let err_msg = format!("failed to retreive socket address")
.to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
},
None => {
let err_msg =
format!("failed to retreive socket address").to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
} }
} }
} }
@@ -470,13 +693,7 @@ pub fn start_p2p_executor(
} }
} }
// 2. Poll network for new events (e.g., an incoming connection) sleep(std::time::Duration::from_millis(50)).await;
// ...
// When a new peer is found:
// event_tx.send(NetworkEvent::PeerConnected("NewPeerID".to_string())).unwrap();
// Avoid spinning too fast
tokio::time::sleep(std::time::Duration::from_millis(50)).await;
} }
}) })
} }
@@ -490,27 +707,133 @@ fn socket_addr_to_vec(addr: SocketAddr) -> Vec<u8> {
v v
} }
fn parse_pack(s: &str) -> Option<[u8; 6]> { async fn quick_ping(addr: &SocketAddr, timeout_ms: u64, sd: &P2PSharedData) -> bool {
// split into "ip" and "port" let id = generate_id();
let mut parts = s.rsplitn(2, ':'); let pingreq = construct_message(PING, Vec::new(), id, &sd.shared_cryptopair);
let port_str = parts.next()?;
let ip_str = parts.next()?; // if missing, invalid
let ip: Ipv4Addr = ip_str.parse().ok()?; if let Some(ping) = pingreq {
let port: u16 = port_str.parse().ok()?; sd.add_message(id, EventType::Ping);
sd.senders_ref()
.send_dispatch(ping, addr.to_string(), false);
}
let octets = ip.octets(); sleep(Duration::from_millis(timeout_ms)).await;
let port_be = port.to_be_bytes();
Some([ let msg_list = sd.messages_list_ref().lock().expect("yooo");
octets[0], octets[1], octets[2], octets[3], port_be[0], port_be[1], let res = !msg_list.contains_key(&id);
])
for (id, evt) in msg_list.iter() {
println!("id : {}, evt : {}", id, evt.to_string());
}
println!("message list doesnt contain key? {}", res);
res
} }
/// ///
/// sends a get request to the server to get the socket address of the given peer /// sends a get request to the server to get the socket address of the given peer
/// ///
pub async fn get_socket_address(
username: String,
ip: String,
shared_data: Option<&P2PSharedData>,
) -> Result<SocketAddr, FetchSocketAddressError> {
let sd = shared_data.expect("No shared data");
pub async fn get_socket_address(username: String, ip: String) -> Option<SocketAddr> { let client = match Client::builder().timeout(Duration::from_secs(5)).build() {
Ok(c) => c,
Err(e) => {
return Err(FetchSocketAddressError::ClientError(e.to_string()));
}
};
let uri = format!("{}/peers/{}/addresses", ip, username);
let res = match client.get(&uri).send().await {
Ok(r) => r,
Err(e) => return Err(FetchSocketAddressError::ClientError(e.to_string())),
};
if res.status().is_success() {
println!("Successfully retrieved the addresses. {}", res.status());
} else {
eprintln!(
"Failed to get the peers addresses from the server. Status: {}",
res.status()
);
}
let body = match res.bytes().await {
Ok(b) => b,
Err(e) => {
return Err(FetchSocketAddressError::ClientError(e.to_string()));
}
};
let s = match String::from_utf8(body.to_vec()) {
Ok(st) => st,
Err(e) => {
return Err(FetchSocketAddressError::ClientError(e.to_string()));
}
};
let addresses: Vec<SocketAddr> = {
let temp = parse_addresses(&s);
temp.iter()
.filter_map(|a| match a {
SocketAddr::V4(_) => Some(*a),
SocketAddr::V6(_) => None,
})
.collect()
};
if addresses.is_empty() {
return Err(FetchSocketAddressError::NoRegisteredAddresses);
} else if !addresses.iter().any(|a| matches!(a, SocketAddr::V4(_))) {
return Err(FetchSocketAddressError::NoIPV4Address);
}
for addr in addresses {
println!("trying address : {}", addr);
if quick_ping(&addr, 1000, sd).await {
return Ok(addr);
}
let payload = socket_addr_to_vec(addr);
let id = generate_id();
let natreq = construct_message(NATTRAVERSALREQUEST, payload.clone(), id, &sd.cryptopair());
sd.add_message(id, EventType::NatTraversal);
sd.senders_ref().send_dispatch(
natreq.expect("couldnt construct message nattraversalrequest2"),
sd.serveraddress().to_string(),
false,
);
sleep(Duration::from_millis(1000)).await;
let maybe_entry = {
let guard = sd.messages_received_ref().lock().unwrap();
guard.clone()
}; // guard dropped
for (id, (evt, time)) in maybe_entry.iter() {
println!("{} : {} at {}", id, evt.to_string(), time.to_string());
if id.eq(&addr.to_string()) && Timestamp::now().diff(time) < 10 {
println!("received message from address, returning said address..");
return Ok(addr);
}
}
if quick_ping(&addr, 5000, sd).await {
return Ok(addr);
}
}
Err(FetchSocketAddressError::NoResponseFromUser)
}
pub async fn get_server_address(username: String, ip: String) -> Option<SocketAddr> {
let client = Client::builder() let client = Client::builder()
.timeout(Duration::from_secs(5)) .timeout(Duration::from_secs(5))
.build() .build()

View File

@@ -1,14 +1,12 @@
use crate::{ use crate::{
NetworkEvent, NodeHash, NetworkEvent, NodeHash,
cryptographic_signature::{ cryptographic_signature::{CryptographicSignature, get_peer_key, verify_signature},
CryptographicSignature, get_peer_key, sign_message, verify_signature,
},
datum_parsing::parse_received_datum, datum_parsing::parse_received_datum,
messages_channels::MultipleSenders, messages_channels::MultipleSenders,
messages_structure::construct_message, messages_structure::construct_message,
peers_refresh::HandshakeHistory, peers_refresh::HandshakeHistory,
registration,
server_communication::generate_id, server_communication::generate_id,
timestamp::Timestamp,
}; };
use std::{ use std::{
collections::HashMap, collections::HashMap,
@@ -20,7 +18,7 @@ use std::{
}; };
// Types of messages that await for a response // Types of messages that await for a response
#[derive(Debug)] #[derive(Debug, Clone)]
pub enum EventType { pub enum EventType {
HelloThenRootRequest, HelloThenRootRequest,
Hello, Hello,
@@ -28,13 +26,40 @@ pub enum EventType {
Ping, Ping,
NatTraversal, NatTraversal,
DatumRequest, DatumRequest,
DatumRequestBig,
Unknown,
}
impl EventType {
pub fn to_string(&self) -> String {
match self {
EventType::HelloThenRootRequest => "HelloThenRootRequest".to_owned(),
EventType::Hello => "Hello".to_owned(),
EventType::RootRequest => "RootRequest".to_owned(),
EventType::Ping => "Ping".to_owned(),
EventType::NatTraversal => "NatTraversal".to_owned(),
EventType::DatumRequest => "DatumRequest".to_owned(),
EventType::Unknown => "Unknown".to_owned(),
EventType::DatumRequestBig => "DatumRequestBig".to_owned(),
}
}
pub fn from_msgtype(msgtype: u8) -> EventType {
match msgtype {
PING => EventType::Ping,
HELLO => EventType::Hello,
ROOTREQUEST => EventType::RootRequest,
NATTRAVERSALREQUEST => EventType::NatTraversal,
DATUMREQUEST => EventType::DatumRequest,
_ => EventType::Unknown,
}
}
} }
const ID: usize = 4; const ID: usize = 4;
const TYPE: usize = 5; const TYPE: usize = 5;
const LENGTH: usize = 7; const LENGTH: usize = 7;
const EXTENSIONS: usize = 4; const EXTENSIONS: usize = 4;
const SIGNATURE: usize = 64;
pub const PING: u8 = 0; pub const PING: u8 = 0;
const OK: u8 = 128; const OK: u8 = 128;
@@ -51,6 +76,7 @@ const NATTRAVERSALREQUEST2: u8 = 5;
pub fn handle_recevied_message( pub fn handle_recevied_message(
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>, messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
messages_received: &Arc<Mutex<HashMap<String, (EventType, Timestamp)>>>,
recevied_message: &Vec<u8>, recevied_message: &Vec<u8>,
crypto_pair: &CryptographicSignature, crypto_pair: &CryptographicSignature,
//socket_addr: &SocketAddr, //socket_addr: &SocketAddr,
@@ -73,7 +99,6 @@ pub fn handle_recevied_message(
let length_bytes: [u8; 2] = recevied_message[TYPE..LENGTH] let length_bytes: [u8; 2] = recevied_message[TYPE..LENGTH]
.try_into() .try_into()
.expect("Taille incorrecte"); .expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes) as usize;
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
let received_name = &recevied_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize]; let received_name = &recevied_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let name = String::from_utf8(received_name.to_vec()).expect("wrong name"); let name = String::from_utf8(received_name.to_vec()).expect("wrong name");
@@ -89,6 +114,7 @@ pub fn handle_recevied_message(
cmd_tx, cmd_tx,
ip, ip,
messages_list, messages_list,
messages_received,
handhsake_history, handhsake_history,
senders, senders,
); );
@@ -97,12 +123,7 @@ pub fn handle_recevied_message(
None => {} None => {}
Some(resp_msg) => { Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg); println!("msg_sent:{:?}", resp_msg);
senders.send_dispatch( senders.send_dispatch(resp_msg, ip.to_string(), is_resp_to_server_handshake);
resp_msg,
ip.to_string(),
is_resp_to_server_handshake,
messages_list.clone(),
);
} }
} }
} }
@@ -114,17 +135,22 @@ pub fn parse_message(
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
ip: SocketAddr, ip: SocketAddr,
messages_list: &Arc<Mutex<HashMap<i32, EventType>>>, messages_list: &Arc<Mutex<HashMap<i32, EventType>>>,
messages_received: &Arc<Mutex<HashMap<String, (EventType, Timestamp)>>>,
handhsake_history: Arc<HandshakeHistory>, handhsake_history: Arc<HandshakeHistory>,
senders: &MultipleSenders, senders: &MultipleSenders,
) -> Option<Vec<u8>> { ) -> Option<Vec<u8>> {
let cmd_tx_clone = cmd_tx.clone(); let cmd_tx_clone = cmd_tx.clone();
let id_bytes: [u8; 4] = received_message[0..ID]
.try_into()
.expect("Taille incorrecte");
let msgtype = received_message[ID]; let msgtype = received_message[ID];
messages_received
.lock()
.expect("couldnt lock received map")
.insert(
ip.to_string(),
(EventType::from_msgtype(msgtype), Timestamp::now()),
);
let length_bytes: [u8; 2] = received_message[TYPE..LENGTH] let length_bytes: [u8; 2] = received_message[TYPE..LENGTH]
.try_into() .try_into()
.expect("Taille incorrecte"); .expect("Taille incorrecte");
@@ -134,6 +160,7 @@ pub fn parse_message(
match msgtype { match msgtype {
HELLO | HELLOREPLY => { HELLO | HELLOREPLY => {
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
println!("hello");
println!("name received length: {}", ilength); println!("name received length: {}", ilength);
let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize]; let received_name = &received_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let received_username = String::from_utf8(received_name.to_vec()); let received_username = String::from_utf8(received_name.to_vec());
@@ -147,12 +174,14 @@ pub fn parse_message(
.block_on(get_peer_key(&username)) .block_on(get_peer_key(&username))
.expect("failed to retrieve public key"), .expect("failed to retrieve public key"),
}; };
println!("handshake JULIUS added"); match msgtype {
handhsake_history.add_new_handshake(peer_pubkey, "".to_string(), ip); HELLOREPLY => {
let signature: [u8; SIGNATURE] = received_message handhsake_history.add_new_handshake(peer_pubkey, "".to_string(), ip);
[LENGTH + msg_length..LENGTH + msg_length + SIGNATURE] }
.try_into() _ => {
.expect("Taille incorrecte"); println!("no handshake added");
}
}
if !verify_signature(peer_pubkey, &received_message) { if !verify_signature(peer_pubkey, &received_message) {
println!( println!(
"incorrect signature from given peer: {}, ignoring message of type {} with id {}", "incorrect signature from given peer: {}, ignoring message of type {} with id {}",
@@ -228,7 +257,6 @@ pub fn parse_message(
natreq2.expect("couldnt construct message nattraversalrequest2"), natreq2.expect("couldnt construct message nattraversalrequest2"),
address, address,
false, false,
messages_list.clone(),
); );
} }
@@ -238,10 +266,6 @@ pub fn parse_message(
let ilength = u16::from_be_bytes(length_bytes); let ilength = u16::from_be_bytes(length_bytes);
let received_address = &received_message[LENGTH..LENGTH + ilength as usize]; let received_address = &received_message[LENGTH..LENGTH + ilength as usize];
println!("received_address:{:?}", received_message);
//let addressv4 = IpAddr::V4(Ipv4Addr::from_octets(
// received_address[0..4].try_into().expect("incorrect size"),
//));
let bytes: [u8; 4] = received_address[0..4].try_into().expect("incorrect size"); let bytes: [u8; 4] = received_address[0..4].try_into().expect("incorrect size");
let addr_v4 = Ipv4Addr::from(bytes); let addr_v4 = Ipv4Addr::from(bytes);
let addressv4 = IpAddr::V4(addr_v4); let addressv4 = IpAddr::V4(addr_v4);
@@ -259,14 +283,12 @@ pub fn parse_message(
constructed_message.expect("couldnt construct message ping request"), constructed_message.expect("couldnt construct message ping request"),
ip.to_string(), ip.to_string(),
false, false,
messages_list.clone(),
); );
senders.send_dispatch( senders.send_dispatch(
pingreq.expect("couldnt construct message ping request"), pingreq.expect("couldnt construct message ping request"),
address.to_string(), address.to_string(),
false, false,
messages_list.clone(),
); );
constructed_message = None; constructed_message = None;
} }
@@ -276,10 +298,10 @@ pub fn parse_message(
String::from_utf8(received_message[LENGTH..(msg_length + LENGTH)].to_vec()) String::from_utf8(received_message[LENGTH..(msg_length + LENGTH)].to_vec())
{ {
let err_msg = format!("Error received from peer {} : {}", ip, err_received); let err_msg = format!("Error received from peer {} : {}", ip, err_received);
let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg)); let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg, "".to_owned()));
} else { } else {
let err_msg = format!("Error received from peer {} : N/A", ip,); let err_msg = format!("Error received from peer {} : N/A", ip,);
let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg)); let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg, "".to_owned()));
} }
} }
@@ -329,14 +351,11 @@ pub fn parse_message(
// envoyer la root request // envoyer la root request
let _ = &guard.remove_entry(&id); let _ = &guard.remove_entry(&id);
println!("message {} retiré de la liste", id); println!("message {} retiré de la liste", id);
let new_id = generate_id();
let rootrequest = construct_message( let rootrequest =
ROOTREQUEST, construct_message(ROOTREQUEST, Vec::new(), new_id, crypto_pair);
Vec::new(), let _ = &guard.insert(new_id, EventType::RootRequest);
generate_id(), println!("root requesst sent");
crypto_pair,
);
//&guard.insert(, v)
return rootrequest; return rootrequest;
} }
EventType::Hello => { EventType::Hello => {
@@ -351,6 +370,7 @@ pub fn parse_message(
} }
ROOTREPLY => { ROOTREPLY => {
// recuperer le pseudo du peers ayant repondu // recuperer le pseudo du peers ayant repondu
println!("root reply received");
let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string()); let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string());
match peers_exist { match peers_exist {
Some(peerinfo) => { Some(peerinfo) => {
@@ -369,11 +389,15 @@ pub fn parse_message(
[LENGTH..(32 + LENGTH)] [LENGTH..(32 + LENGTH)]
.try_into() .try_into()
.expect("incorrect size"); .expect("incorrect size");
let res = match cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived(
cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived( peerinfo.username.clone(),
peerinfo.username.clone(), received_hash,
received_hash, )) {
)); Ok(_) => {}
Err(e) => {
println!("Network Event Error : {}", e.to_string());
}
};
println!("file tree sent"); println!("file tree sent");
// envoyer un datum // envoyer un datum
let mut payload = Vec::new(); let mut payload = Vec::new();
@@ -388,7 +412,9 @@ pub fn parse_message(
constructed_message = datumreqest; constructed_message = datumreqest;
guard.insert(new_id, EventType::DatumRequest); guard.insert(new_id, EventType::DatumRequest);
} }
_ => {} _ => {
println!("event not prensent");
}
} }
} }
None => {} None => {}
@@ -417,17 +443,62 @@ pub fn parse_message(
parse_received_datum(received_datum.to_vec(), received_length as usize); parse_received_datum(received_datum.to_vec(), received_length as usize);
match parsed_node { match parsed_node {
Some(tuple) => { Some(tuple) => {
let _ = let _ = cmd_tx.send(NetworkEvent::FileTreeReceived(
cmd_tx.send(NetworkEvent::FileTreeReceived(tuple.0, tuple.1)); tuple.0,
tuple.1,
ip.to_string(),
));
} }
None => {} None => {}
} }
} }
EventType::DatumRequestBig => {
println!("message {} retiré de la liste", id);
let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH]
.try_into()
.expect("incorrect size"),
);
println!("received length:{}", received_length);
let received_datum = &received_message[LENGTH..];
let parsed_node =
parse_received_datum(received_datum.to_vec(), received_length as usize);
match parsed_node {
Some(tuple) => {
let _ = &guard.remove_entry(&id);
let _ = cmd_tx.send(NetworkEvent::DataReceived(
tuple.0,
tuple.1,
ip.to_string(),
));
println!("datareceived event sent");
}
None => {
println!("message corrompu, nouvelle tentative");
}
}
}
_ => {} _ => {}
}, },
None => {} None => {}
} }
} }
ROOTREQUEST => {
println!("root request received");
let _ = cmd_tx.send(NetworkEvent::RootRequest(ip.to_string()));
}
DATUMREQUEST => {
let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH]
.try_into()
.expect("incorrect size"),
);
let received_hash = &received_message[LENGTH..LENGTH + received_length as usize];
let _ = cmd_tx.send(NetworkEvent::DatumRequest(
received_hash.try_into().expect("incorrect size"),
ip.to_string(),
));
}
_ => return None, _ => return None,
}; };
constructed_message constructed_message

View File

@@ -1,26 +1,20 @@
use crossbeam_channel::Receiver; use crossbeam_channel::Receiver;
use tokio::time::sleep;
use crate::P2PSharedData; use crate::P2PSharedData;
use crate::cryptographic_signature::CryptographicSignature;
use crate::message_handling::EventType; use crate::message_handling::EventType;
use crate::message_handling::handle_recevied_message; use crate::message_handling::handle_recevied_message;
use crate::peers_refresh::HandshakeHistory; use crate::peers_refresh::HandshakeHistory;
use crate::threads_handling::Worker; use crate::threads_handling::Worker;
use std::clone; use std::collections::HashMap;
use std::collections::{HashMap, HashSet};
use std::hash::Hash;
use std::net::SocketAddr;
use std::net::UdpSocket; use std::net::UdpSocket;
use std::sync::{Arc, Mutex}; use std::sync::{Arc, Mutex};
use std::sync::mpsc::{self, Sender};
use std::thread; use std::thread;
use std::collections::VecDeque; use std::collections::VecDeque;
use std::time::Duration;
use std::time::SystemTime; use std::time::SystemTime;
use std::time::UNIX_EPOCH; use std::time::UNIX_EPOCH;
use std::time::{Duration, Instant};
use crate::NetworkEvent; use crate::NetworkEvent;
@@ -38,10 +32,8 @@ struct RetryMessage {
pub struct MultipleSenders { pub struct MultipleSenders {
sender: crossbeam_channel::Sender<Message>, sender: crossbeam_channel::Sender<Message>,
receiver: crossbeam_channel::Receiver<Message>,
response_channel: crossbeam_channel::Sender<NetworkEvent>, response_channel: crossbeam_channel::Sender<NetworkEvent>,
retry_queue: Arc<Mutex<VecDeque<RetryMessage>>>, retry_queue: Arc<Mutex<VecDeque<RetryMessage>>>,
completed_messages: HashSet<i32>,
} }
impl MultipleSenders { impl MultipleSenders {
@@ -50,6 +42,7 @@ impl MultipleSenders {
socket: &Arc<UdpSocket>, socket: &Arc<UdpSocket>,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>, cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
threads: &mut Vec<Worker>, threads: &mut Vec<Worker>,
messages_list: Arc<Mutex<HashMap<i32, EventType>>>,
) -> Self { ) -> Self {
let (tx1, rx1) = crossbeam_channel::unbounded(); let (tx1, rx1) = crossbeam_channel::unbounded();
@@ -57,18 +50,22 @@ impl MultipleSenders {
let sock_clone = Arc::clone(&socket); let sock_clone = Arc::clone(&socket);
let cmd_tx_clone = cmd_tx.clone(); let cmd_tx_clone = cmd_tx.clone();
let rx: Receiver<Message> = rx1.clone(); let rx: Receiver<Message> = rx1.clone();
let msg_list_clone = messages_list.clone();
let thread = thread::spawn(move || { let thread = thread::spawn(move || {
println!("Canal d'envoi {} prêt", i); println!("Canal d'envoi {} prêt", i);
loop { loop {
// Priorité aux messages en attente prêts à être réessayés
// Si aucun retry prêt, on bloque sur rx avec timeout court, pour pouvoir traiter les timers
let msg = rx.recv().unwrap(); let msg = rx.recv().unwrap();
match sock_clone.send_to(&msg.payload, &msg.address) { match sock_clone.send_to(&msg.payload, &msg.address) {
Ok(_) => { Ok(_) => {
if msg.is_resp_to_server_handshake { if msg.is_resp_to_server_handshake {
let res = cmd_tx_clone.send(NetworkEvent::ConnectedHandshake()); match cmd_tx_clone.send(NetworkEvent::ConnectedHandshake()) {
Ok(_) => {}
Err(e) => {
println!("Network Event Error : {}", e.to_string());
}
};
} }
let message_id: [u8; 4] = let message_id: [u8; 4] =
msg.payload[0..4].try_into().expect("size error"); msg.payload[0..4].try_into().expect("size error");
@@ -84,61 +81,33 @@ impl MultipleSenders {
"Erreur d'envoi initial sur canal {}: {}, address: {}", "Erreur d'envoi initial sur canal {}: {}, address: {}",
i, e, &msg.address i, e, &msg.address
); );
let mut guard = msg_list_clone.lock().unwrap();
let message_id: [u8; 4] =
msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
guard.remove_entry(&id);
drop(guard);
} }
} }
} }
}); });
threads.push(Worker::spawn( threads.push(Worker::spawn(thread));
thread,
crate::threads_handling::WorkerType::MSGSENDER,
));
} }
MultipleSenders { MultipleSenders {
sender: tx1, sender: tx1,
receiver: rx1,
response_channel: cmd_tx.clone(), response_channel: cmd_tx.clone(),
retry_queue: Arc::new(Mutex::new(VecDeque::new())), retry_queue: Arc::new(Mutex::new(VecDeque::new())),
completed_messages: HashSet::new(),
} }
} }
/*
/// Envoie un message via un canal spécifique (round-robin ou index précis)
pub fn send_via(
&self,
channel_idx: usize,
data: Vec<u8>,
remote_addr: String,
is_resp_to_server_handshake: bool,
messages_list: &Mutex<HashMap<i32, EventType>>,
) {
println!(
"is_resp_to_server_handshake {}",
is_resp_to_server_handshake
);
let msg_to_send = Message {
payload: data.clone(),
address: remote_addr,
is_resp_to_server_handshake,
};
if let Some(sender) = self.senders.get(channel_idx) {
let _ = sender.send(msg_to_send);
}
if !is_resp_to_server_handshake {
let mut guard = messages_list.lock().unwrap();
let message_id: [u8; 4] = data[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
guard.insert(id, EventType::SendRootRequest);
}
}*/
pub fn send_dispatch( pub fn send_dispatch(
&self, &self,
data: Vec<u8>, data: Vec<u8>,
remote_addr: String, remote_addr: String,
is_resp_to_server_handshake: bool, is_resp_to_server_handshake: bool,
messages_list: Arc<Mutex<HashMap<i32, EventType>>>,
) { ) {
let msg_to_send = Message { let msg_to_send = Message {
payload: data.clone(), payload: data.clone(),
@@ -193,13 +162,13 @@ pub fn start_retry_thread(
// on verifie si le message a recu une reponse // on verifie si le message a recu une reponse
let message_id: [u8; 4] = front.msg.payload[0..4].try_into().expect("size error"); let message_id: [u8; 4] = front.msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id); let id = i32::from_be_bytes(message_id);
let message_type = front.msg.payload[4]; let message_type = front.msg.payload[4];
let guard = messages_list.lock().unwrap(); let guard = messages_list.lock().unwrap();
if guard.contains_key(&id) { if guard.contains_key(&id) {
drop(guard); drop(guard);
// si le message est n'a pas encore a etre traité, on le
// remet en queue de liste
if front.next_try if front.next_try
<= SystemTime::now() <= SystemTime::now()
.duration_since(UNIX_EPOCH) .duration_since(UNIX_EPOCH)
@@ -214,9 +183,15 @@ pub fn start_retry_thread(
); );
println!("{}", str); println!("{}", str);
if front.msg.is_resp_to_server_handshake { if front.msg.is_resp_to_server_handshake {
let res = senders match senders
.response_channel .response_channel
.send(NetworkEvent::ServerHandshakeFailed(str)); .send(NetworkEvent::ServerHandshakeFailed(str))
{
Ok(_) => {}
Err(e) => {
println!("Network Event Error : {}", e.to_string());
}
};
} }
} else { } else {
let str = format!( let str = format!(
@@ -229,11 +204,11 @@ pub fn start_retry_thread(
front.msg.payload.clone(), front.msg.payload.clone(),
front.msg.address.clone(), front.msg.address.clone(),
front.msg.is_resp_to_server_handshake, front.msg.is_resp_to_server_handshake,
messages_list.clone(),
); );
let base: u64 = 2; let base: u64 = 2;
let backoff = base.saturating_pow(attempt as u32); // 2^1 == 2 seconds let backoff = base.saturating_pow(attempt as u32); // 2^1 == 2 seconds
//let backoff = 1;
let newretry = RetryMessage { let newretry = RetryMessage {
next_try: SystemTime::now() next_try: SystemTime::now()
.duration_since(UNIX_EPOCH) .duration_since(UNIX_EPOCH)
@@ -244,19 +219,16 @@ pub fn start_retry_thread(
attempts: attempt, attempts: attempt,
}; };
q.push_back(newretry); // remettre en tête pour réessayer plus tôt q.push_back(newretry);
} }
} else { } else {
q.push_back(front); // remettre en tête pour réessayer plus tôt q.push_back(front);
} }
} }
} }
} }
}); });
threads.push(Worker::spawn( threads.push(Worker::spawn(thread));
thread,
crate::threads_handling::WorkerType::MSGRETRY,
));
} }
pub fn start_receving_thread( pub fn start_receving_thread(
@@ -268,17 +240,19 @@ pub fn start_receving_thread(
let cryptopair_clone = shared_data.cryptopair(); let cryptopair_clone = shared_data.cryptopair();
let senders_clone = shared_data.senders(); let senders_clone = shared_data.senders();
let messages_clone = shared_data.messages_list(); let messages_clone = shared_data.messages_list();
let messages_received_clone = shared_data.messages_received();
let servername_clone = shared_data.servername(); let servername_clone = shared_data.servername();
let thread = thread::spawn(move || { let thread = thread::spawn(move || {
let mut buf = [0u8; 1024]; let mut buf = [0u8; 1500];
loop { loop {
match sock_clone.recv_from(&mut buf) { match sock_clone.recv_from(&mut buf) {
Ok((amt, src)) => { Ok((amt, src)) => {
let received_data = buf[..amt].to_vec(); let received_data = buf[..amt].to_vec();
println!("Reçu {} octets de {}: {:?}", amt, src, received_data); println!("Reçu {} octets de {}", amt, src);
handle_recevied_message( handle_recevied_message(
&messages_clone, &messages_clone,
&messages_received_clone,
&received_data, &received_data,
&cryptopair_clone, &cryptopair_clone,
&senders_clone, &senders_clone,
@@ -292,8 +266,5 @@ pub fn start_receving_thread(
} }
} }
}); });
shared_data.threads.push(Worker::spawn( shared_data.threads.push(Worker::spawn(thread));
thread,
crate::threads_handling::WorkerType::MSGRECEPTION,
));
} }

View File

@@ -1,3 +1,4 @@
#![allow(unused)]
use crate::cryptographic_signature::{CryptographicSignature, sign_message}; use crate::cryptographic_signature::{CryptographicSignature, sign_message};
const ID: usize = 4; const ID: usize = 4;
@@ -163,7 +164,7 @@ impl HandshakeMessage {
} }
} }
pub fn helloReply(id: u32, length: u16, username: String) -> HandshakeMessage { pub fn hello_reply(id: u32, length: u16, username: String) -> HandshakeMessage {
let name_vec = username.trim_end_matches(char::from(0)).as_bytes().to_vec(); let name_vec = username.trim_end_matches(char::from(0)).as_bytes().to_vec();
HandshakeMessage { HandshakeMessage {
id: id, id: id,
@@ -219,28 +220,3 @@ impl HandshakeMessage {
} }
} }
} }
#[cfg(test)]
mod tests {
// Note this useful idiom: importing names from outer (for mod tests) scope.
use super::*;
/// creates an handshake message
#[tokio::test]
async fn creating_handshake_msg() {
let username = String::from("charlie_kirk");
let handshake = HandshakeMessage::hello(0, 12, username);
handshake.display();
}
/// parses an handshake message
#[tokio::test]
async fn parse_handshakemessage() {
let username = String::from("charlie_kirk");
let handshake = HandshakeMessage::hello(0, 12, username);
let ser = handshake.serialize();
let parsed = HandshakeMessage::parse(ser);
handshake.display();
parsed.display();
}
}

View File

@@ -4,24 +4,18 @@
pub use crate::message_handling::*; pub use crate::message_handling::*;
use std::{ use std::{
collections::{HashMap, VecDeque}, collections::HashMap,
net::{AddrParseError, Ipv4Addr, SocketAddr}, net::SocketAddr,
ops::Add,
process::Command,
sync::{Arc, Mutex}, sync::{Arc, Mutex},
thread::{self, JoinHandle}, thread::{self},
time::{self, Duration, SystemTime}, time::Duration,
}; };
use crate::{construct_message, generate_id};
use crate::{ use crate::{
NetworkEvent, cryptographic_signature::CryptographicSignature, cryptographic_signature::CryptographicSignature, messages_channels::MultipleSenders,
messages_channels::MultipleSenders, threads_handling::Worker, threads_handling::Worker,
}; };
use crate::{
P2PSharedData, construct_message, generate_id, messages_structure,
registration::perform_handshake,
};
use crossbeam_channel::{Receiver, Sender};
use p256::ecdsa::VerifyingKey; use p256::ecdsa::VerifyingKey;
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
@@ -90,6 +84,10 @@ impl HandshakeHistory {
} }
} }
pub fn get_username_peerinfo_map(&self) -> Arc<Mutex<HashMap<String, PeerInfo>>> {
self.username_k_peerinfo_v.clone()
}
pub fn add_new_handshake(&self, hash: VerifyingKey, username: String, ip: SocketAddr) { pub fn add_new_handshake(&self, hash: VerifyingKey, username: String, ip: SocketAddr) {
let peerinfo = PeerInfo { let peerinfo = PeerInfo {
username: username.clone(), username: username.clone(),
@@ -112,14 +110,11 @@ pub fn update_handshake(
let map_for_thread = username_k_peerinfo_v.clone(); let map_for_thread = username_k_peerinfo_v.clone();
let handle = thread::spawn(move || { let handle = thread::spawn(move || {
loop { loop {
println!("loop boucle");
let guard = map_for_thread.lock().unwrap(); let guard = map_for_thread.lock().unwrap();
println!("len:{}", guard.len()); for (_, peerinfo) in guard.iter() {
for (peer, peerinfo) in guard.iter() {
let id = generate_id(); let id = generate_id();
let mut map = messages_list.lock().unwrap(); let mut map = messages_list.lock().unwrap();
map.insert(id, EventType::Ping); map.insert(id, EventType::Ping);
drop(map);
let pingrequest = construct_message(PING, Vec::new(), id, &crypto_pair); let pingrequest = construct_message(PING, Vec::new(), id, &crypto_pair);
if let Some(ping) = pingrequest { if let Some(ping) = pingrequest {
senders.add_message_to_retry_queue( senders.add_message_to_retry_queue(
@@ -127,34 +122,12 @@ pub fn update_handshake(
peerinfo.ip.to_string(), peerinfo.ip.to_string(),
false, false,
); );
senders.send_dispatch( senders.send_dispatch(ping, peerinfo.ip.to_string(), false);
ping,
peerinfo.ip.to_string(),
false,
messages_list.clone(),
);
println!("ping envoye a {}", peer);
} }
} }
thread::sleep(Duration::from_secs(2)); drop(guard);
thread::sleep(Duration::from_secs(60));
} }
}); });
Worker::spawn(handle, crate::threads_handling::WorkerType::PING) Worker::spawn(handle)
}
#[cfg(test)]
mod tests {
use std::net::{IpAddr, Ipv4Addr};
use super::*;
/*#[test]
fn creating_cryptographic_signature() {
let mut hh = HandshakeHistory::new();
hh.add_new_handshake(
20,
"putain".to_string(),
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 1),
);
}*/
} }

View File

@@ -1,19 +1,14 @@
use bytes::Bytes;
use crate::NetworkEvent; use crate::NetworkEvent;
use crate::P2PSharedData; use crate::P2PSharedData;
use crate::cryptographic_signature::{CryptographicSignature, formatPubKey, sign_message}; use crate::cryptographic_signature::CryptographicSignature;
use crate::get_socket_address; use crate::get_socket_address;
use crate::message_handling::EventType; use crate::message_handling::EventType;
use crate::messages_channels::MultipleSenders;
use crate::messages_structure::construct_message; use crate::messages_structure::construct_message;
use crate::server_communication::generate_id; use crate::server_communication::generate_id;
use crossbeam_channel::{Receiver, Sender}; use crossbeam_channel::Sender;
use std::collections::HashMap;
use std::net::SocketAddr; use std::net::SocketAddr;
use std::net::UdpSocket;
use std::str::FromStr; use std::str::FromStr;
use std::sync::{Arc, Mutex}; use std::sync::Arc;
/// ///
/// sends the cryptographic signature to the server using a PUT request over the HTTP API. /// sends the cryptographic signature to the server using a PUT request over the HTTP API.
@@ -29,8 +24,13 @@ pub async fn register_with_the_server(
let pubkey_bytes_minus = pubkey_bytes[1..].to_vec(); let pubkey_bytes_minus = pubkey_bytes[1..].to_vec();
let res = client.put(uri).body(pubkey_bytes_minus).send().await?; let res = client.put(uri).body(pubkey_bytes_minus).send().await?;
let res = res.error_for_status()?; let res = res.error_for_status()?;
println!("register ip adresses"); match res.error_for_status() {
Ok(()) Ok(_) => {
println!("register ip adresses");
Ok(())
}
Err(e) => Err(e),
}
} }
pub fn parse_addresses(input: &String) -> Vec<SocketAddr> { pub fn parse_addresses(input: &String) -> Vec<SocketAddr> {
@@ -55,95 +55,59 @@ pub async fn perform_handshake(
username: String, username: String,
ip: String, ip: String,
event_tx: Sender<NetworkEvent>, event_tx: Sender<NetworkEvent>,
is_server_handshake: bool, is_server_handshake: (bool, String),
) { ) -> bool {
println!("username: {}, ip: {}", username.clone(), ip.clone()); println!("username: {}, ip: {}", username.clone(), ip.clone());
let crypto_pair = sd.cryptopair_ref(); let crypto_pair = sd.cryptopair_ref();
let senders = sd.senders_ref(); let senders = sd.senders_ref();
let id = generate_id(); let id = generate_id();
let server_addr_query = get_socket_address(username.clone(), ip.clone());
match server_addr_query.await {
Some(sockaddr_bytes) => {
sd.set_servername(username);
// first: &SocketAddr
let mut payload = Vec::new();
payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let hello_handshake = construct_message(1, payload, id, crypto_pair);
if is_server_handshake {
sd.add_message(id, EventType::Hello);
} else {
sd.add_message(id, EventType::HelloThenRootRequest);
}
match hello_handshake { let address = {
Some(handshake_message) => { if is_server_handshake.0 {
senders.send_dispatch( is_server_handshake.1
handshake_message, } else {
sockaddr_bytes.to_string(), let server_addr_query =
is_server_handshake, get_socket_address(username.clone(), ip.clone(), Some(sd)).await;
sd.messages_list(),
); match server_addr_query {
Ok(sockaddr_bytes) => sockaddr_bytes.to_string(),
Err(err_msg) => {
match event_tx.send(NetworkEvent::Error(
err_msg.to_string(),
username.to_owned(),
)) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
}
"".to_string()
} }
None => {}
} }
} }
None => { };
let err_msg = format!("failed to retreive socket address:").to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg)); if address.eq(&"".to_string()) {
} return false;
} }
/*let mut list = messages_list.lock().expect("Failed to lock messages_list"); let mut payload = Vec::new();
match list.get(&id) { payload.extend_from_slice(&0u32.to_be_bytes());
Some(_) => { payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
list.remove(&id); let hello_handshake = construct_message(1, payload, id, crypto_pair);
} if is_server_handshake.0 {
None => { sd.add_message(id, EventType::Hello);
list.insert(id, EventType::ServerHelloReply); } else {
} sd.add_message(id, EventType::HelloThenRootRequest);
} }
println!("message sent: {}", &id);*/
// 3. Perform the insertion
/*let mut buf = [0u8; 1024];
socket.recv_from(&mut buf).expect("receive failed");
let hello_handshake_received = UDPMessage::parse(buf.to_vec());
hello_handshake_received.display();*/
//TODO
}
#[cfg(test)] match hello_handshake {
mod tests { Some(handshake_message) => {
// Note this useful idiom: importing names from outer (for mod tests) scope. senders.send_dispatch(handshake_message, address, is_server_handshake.0);
use super::*;
/*///
/// does the procedure to register with the server
///
#[tokio::test]
async fn registering_with_server() {
let username = String::from("gameixtreize");
let server_uri = String::from("https://jch.irif.fr:8443");
let crypto_pair = CryptographicSignature::new(username);
if let Err(e) = register_with_the_server(crypto_pair, server_uri).await {
eprintln!("Error during registration: {}", e);
} }
}*/ None => {}
}
/*/// return true;
/// retreives the socket address of a given peer
///
#[tokio::test]
async fn retreive_socket_addr() {
let username = String::from("ipjkndqfshjldfsjlbsdfjhhj");
match get_socket_address(username).await {
Ok(body) => {
println!("{:?}", body);
}
Err(e) => {
eprintln!("Erreur HTTP: {}", e);
}
}
}*/
} }

View File

@@ -4,25 +4,16 @@ use std::sync::{
}; };
use std::thread::JoinHandle; use std::thread::JoinHandle;
pub enum WorkerType {
MSGRECEPTION,
MSGSENDER,
PING,
MSGRETRY,
}
pub struct Worker { pub struct Worker {
thread: Option<JoinHandle<()>>, thread: Option<JoinHandle<()>>,
stop: Arc<AtomicBool>, stop: Arc<AtomicBool>,
workertype: WorkerType,
} }
impl Worker { impl Worker {
pub fn spawn(thread: JoinHandle<()>, workertype: WorkerType) -> Self { pub fn spawn(thread: JoinHandle<()>) -> Self {
Worker { Worker {
stop: Arc::new(AtomicBool::new(false)), stop: Arc::new(AtomicBool::new(false)),
thread: Some(thread), thread: Some(thread),
workertype,
} }
} }

View File

@@ -0,0 +1,46 @@
use std::time::{SystemTime, UNIX_EPOCH};
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Timestamp {
secs: u64, // seconds since UNIX epoch
}
unsafe impl Send for Timestamp {}
impl Timestamp {
// Create a Timestamp from current system time
pub fn now() -> Self {
let dur = SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("system time before UNIX_EPOCH");
Self {
secs: dur.as_secs(),
}
}
// Create from explicit fields (optional helper)
pub fn from_secs(secs: u64) -> Self {
Self { secs }
}
// Return underlying seconds
pub fn as_secs(&self) -> u64 {
self.secs
}
// Return elapsed seconds between `self` and `other`.
// Panics if `other` is in the future relative to `self`.
// If you call `Timestamp::now().diff(past)`, it returns seconds since `past`.
pub fn diff(&self, earlier: &Timestamp) -> u64 {
assert!(earlier.secs <= self.secs, "given time is in the future");
self.secs - earlier.secs
}
pub fn to_string(&self) -> String {
let secs_of_day = self.secs % 86_400;
let hh = secs_of_day / 3600;
let mm = (secs_of_day % 3600) / 60;
let ss = secs_of_day % 60;
format!("{:02}:{:02}:{:02}", hh, mm, ss)
}
}

Binary file not shown.

1
rapport.txt Normal file
View File

@@ -0,0 +1 @@
https://docs.google.com/document/d/1emhrAfjJyJTWpBYx4IJGcCz0_iLVjDRAAdq2EZFchKo/edit?usp=sharing

25
todo.md
View File

@@ -1,24 +1,11 @@
# Todo # Todo
## bugfix
- ajouter hello et nat a l'exp backoff OK
- peers n'ayant pas d'adresse OK
- verifier le refresh des peers
- setting in gui to act as a relay
- make hello and helloreply messages set the first extension bit to announce that peer is available for nat traversal
- implement actual nat traversal requests
- implement nat traversal :
- if hello/helloreply doesnt work with a peer, find a peer that supports nat traversal (server in priority) then begin protocol
## fonctionnalités : ## fonctionnalités :
- proposer des fichiers
rechercher les fichiers d'un pair - telechargement des fichiers
telechargement des fichiers - receivers threads
choisir un dossier à partager - ask for nat traversal
choisir le nombre de canaux
## autre ## autre
@@ -26,6 +13,7 @@ socket ipv6
# FAIT # FAIT
rechercher les fichiers d'un pair OK
- choisir un pseudo OK - choisir un pseudo OK
- get rsquest to the uri /peers/ OK - get rsquest to the uri /peers/ OK
- generation of the cryptographic key OK - generation of the cryptographic key OK
@@ -44,3 +32,6 @@ socket ipv6
- datum/nodatum and datum structures - datum/nodatum and datum structures
- nattraversal 1 and 2 structures - nattraversal 1 and 2 structures
- chunk, directory, big, bigdirectory structures - chunk, directory, big, bigdirectory structures
- ajouter hello et nat a l'exp backoff OK
- peers n'ayant pas d'adresse OK
- verifier le refresh des peers OK