9 Commits

Author SHA1 Message Date
Tiago Batista Cardoso
cb2e89b1e9 working 2026-01-24 19:47:15 +01:00
Tiago Batista Cardoso
524eaec76d decent progress 2026-01-22 01:05:02 +01:00
TIBERGHIEN corentin
34a9db047d ping deadlock 2026-01-22 00:40:29 +01:00
Tiago Batista Cardoso
fe04c8ed27 tried 2026-01-22 00:40:21 +01:00
Tiago Batista Cardoso
1f41ba5261 give up 2026-01-22 00:30:17 +01:00
Tiago Batista Cardoso
7eb1ab119d wip 2026-01-22 00:14:26 +01:00
Tiago Batista Cardoso
0799841cf2 splash 2026-01-21 23:58:15 +01:00
Tiago Batista Cardoso
424c11c5aa work 2026-01-21 22:48:05 +01:00
Tiago Batista Cardoso
271fdbbb4c temp 2026-01-21 17:40:21 +01:00
18 changed files with 1009 additions and 1397 deletions

1
.gitignore vendored
View File

@@ -1,2 +1 @@
/target
target/

BIN
README.md

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@@ -32,7 +32,7 @@ async fn main() -> eframe::Result<()> {
eframe::run_native(
"p2p-merkle client",
options,
Box::new(|_| {
Box::new(|cc| {
let app = P2PClientApp::new(network_cmd_tx, network_event_rx);
Ok(Box::new(app))
}),

View File

@@ -1,6 +1,11 @@
use std::io::Read;
use bytes::Bytes;
use p256::EncodedPoint;
use p256::ecdsa::{Signature, SigningKey, VerifyingKey, signature::Verifier};
use p256::ecdsa::{
Signature, SigningKey, VerifyingKey,
signature::{Signer, Verifier},
};
use rand_core::OsRng;
use sha2::{Digest, Sha256};
@@ -32,6 +37,15 @@ impl CryptographicSignature {
}
}
///
/// returns a string representing the pub_key as a String
///
pub fn formatPubKey(crypto_pair: CryptographicSignature) -> String {
let encoded_point = crypto_pair.pub_key.to_encoded_point(false);
let pubkey_bytes = encoded_point.as_bytes();
hex::encode(pubkey_bytes)
}
pub async fn get_peer_key(username: &String) -> Result<VerifyingKey, reqwest::Error> {
let client = reqwest::Client::new();
let uri = format!("https://jch.irif.fr:8443/peers/{}/key", username);
@@ -112,7 +126,34 @@ pub fn sign_message(crypto_pair: &CryptographicSignature, message: &Vec<u8>) ->
signed_message
}
Err(e) => {
panic!("error : {}", e);
panic!("error");
}
}
}
#[cfg(test)]
mod tests {
use super::*;
///
/// creates a cryptographic signature
///
#[test]
fn creating_cryptographic_signature() {
let username = String::from("gamixtreize");
let crypto_pair = CryptographicSignature::new(username);
let formatted_pubkey = formatPubKey(crypto_pair);
println!("pubkey : {}", formatted_pubkey);
}
/*#[test]
fn signing_message() {
let username = String::from("gamixtreize");
let crypto_pair = CryptographicSignature::new(username.clone());
let handshake = HandshakeMessage::hello(0, 12, username);
let ser = handshake.serialize();
let signed_message = sign_message(&crypto_pair, &ser);
println!("unsigned_message: {:?}", ser);
println!("signed_message: {:?}", signed_message);
}*/
}

View File

@@ -1,9 +1,6 @@
use rand::{Rng, rng};
use sha2::{Digest, Sha256};
use std::collections::HashMap;
use std::fs::{File, OpenOptions, create_dir};
use std::io::Write;
use std::hash::{DefaultHasher, Hash, Hasher};
// --- Constants ---
pub const MAX_CHUNK_DATA_SIZE: usize = 1024;
@@ -27,9 +24,9 @@ pub enum MerkleNode {
// 0 to 16 directory entries.
Directory(DirectoryNode) = 1,
// list of 2 to 32 hashes pointing to Chunk or Big nodes.
Big(BigNode) = 2,
Big(BigNode) = 3,
// list of 2 to 32 hashes pointing to Directory or BigDirectory nodes.
BigDirectory(BigDirectoryNode) = 3,
BigDirectory(BigDirectoryNode) = 4,
}
#[derive(Debug, Clone)]
@@ -42,9 +39,6 @@ impl MerkleTree {
pub fn new(data: HashMap<NodeHash, MerkleNode>, root: NodeHash) -> MerkleTree {
MerkleTree { data, root }
}
pub fn clear_data(&mut self) {
self.data.clear();
}
}
#[derive(Debug, Clone)]
@@ -62,12 +56,18 @@ impl ChunkNode {
pub fn new_random() -> Self {
let mut rng = rand::rng();
// Determine a random length between 1 and MAX_CHUNK_DATA_SIZE (inclusive).
// Using +1 ensures the range is up to 1024.
let random_len = rng.random_range(1..=MAX_CHUNK_DATA_SIZE);
// Initialize a vector with the random length
let mut data = vec![0u8; random_len];
// Fill the vector with random bytes
rng.fill(&mut data[..]);
// Since we generated the length based on MAX_CHUNK_DATA_SIZE,
// this is guaranteed to be valid and doesn't need to return a Result.
ChunkNode { data }
}
}
@@ -143,8 +143,8 @@ impl MerkleNode {
match self {
MerkleNode::Chunk(_) => 0,
MerkleNode::Directory(_) => 1,
MerkleNode::Big(_) => 2,
MerkleNode::BigDirectory(_) => 3,
MerkleNode::Big(_) => 3,
MerkleNode::BigDirectory(_) => 4,
}
}
@@ -176,291 +176,3 @@ impl MerkleNode {
bytes
}
}
fn hash(data: &[u8]) -> NodeHash {
let root_hash = Sha256::digest(&data);
println!("root hash: {:?}", root_hash);
let res: NodeHash = root_hash.try_into().expect("incorrect size");
res
}
fn generate_random_filename() -> [u8; FILENAME_HASH_SIZE] {
let mut rng = rand::rng();
let mut filename_bytes = [0; FILENAME_HASH_SIZE];
// Generate a random length for the base name
let name_len = rng.random_range(5..21);
// Generate random alphanumeric characters
for i in 0..name_len {
let char_code = rng.random_range(97..123); // 'a' through 'z'
if i < FILENAME_HASH_SIZE {
filename_bytes[i] = char_code as u8;
}
}
// Append a common extension
let ext = if rng.random_bool(0.5) { ".txt" } else { ".dat" };
let ext_bytes = ext.as_bytes();
let start_index = name_len.min(FILENAME_HASH_SIZE - ext_bytes.len());
if start_index < FILENAME_HASH_SIZE {
filename_bytes[start_index..(start_index + ext_bytes.len())].copy_from_slice(ext_bytes);
}
filename_bytes
}
fn generate_random_file_node(
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let is_big = rng.random_bool(0.2); // 20% chance of being a big file
if !is_big {
// Generate a simple Chunk Node
let node = MerkleNode::Chunk(ChunkNode::new_random());
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a Big Node (a file composed of chunks)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(8)); // Limit complexity
let mut children_hashes = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Chunk or Big; for simplicity, we only generate Chunk children here.
let chunk_node = MerkleNode::Chunk(ChunkNode::new_random());
let chunk_hash = hash(&chunk_node.serialize());
storage.insert(chunk_hash, chunk_node);
children_hashes.push(chunk_hash);
}
let node = MerkleNode::Big(BigNode::new(children_hashes)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
fn generate_random_directory_node(
depth: u32,
max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let current_depth = depth + 1;
let is_big_dir = rng.random_bool(0.3) && current_depth < max_depth;
if !is_big_dir || current_depth >= max_depth {
// Generate a simple Directory Node (leaf level directory)
let num_entries = rng.random_range(1..=MAX_DIRECTORY_ENTRIES.min(5)); // Limit directory size for testing
let mut entries = Vec::with_capacity(num_entries);
for _ in 0..num_entries {
if rng.random_bool(0.7) {
// 70% chance of creating a file (Chunk/Big)
let file_hash = generate_random_file_node(storage)?;
let entry = DirectoryEntry {
filename: generate_random_filename(),
content_hash: file_hash,
};
entries.push(entry);
} else if current_depth < max_depth {
// 30% chance of creating a subdirectory
let dir_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
// Create a basic directory entry name
let mut filename_bytes = [0; 32];
let subdir_name = format!("dir_{}", current_depth);
filename_bytes[..subdir_name.len()].copy_from_slice(subdir_name.as_bytes());
let entry = DirectoryEntry {
filename: filename_bytes,
content_hash: dir_hash,
};
entries.push(entry);
}
}
let node = MerkleNode::Directory(DirectoryNode::new(entries)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a BigDirectory Node (internal directory structure)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(4)); // Limit children count
let mut children = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Directory or BigDirectory
let child_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
children.push(child_hash);
}
let node = MerkleNode::BigDirectory(BigDirectoryNode::new(children)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
pub fn generate_random_tree(
max_depth: u32,
) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new();
// Start tree generation from the root directory at depth 0
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage))
}
pub fn generate_base_tree() -> MerkleTree {
let mut res = HashMap::new();
let bob_content = "where is bob".to_string().into_bytes();
let alice_content = "alice".to_string().into_bytes();
let oscar_content = "oscar is the opponent".to_string().into_bytes();
let mut children_nodes = Vec::new();
for _ in 0..10 {
let mut i_nodes = Vec::new();
for _ in 0..10 {
let node1 = MerkleNode::Chunk(ChunkNode::new(bob_content.clone()).unwrap());
let hash = hash(&node1.serialize());
i_nodes.push(hash);
res.insert(hash, node1);
}
let bignode = MerkleNode::Big(BigNode::new(i_nodes).unwrap());
let hashbig = hash(&bignode.serialize());
children_nodes.push(hashbig);
res.insert(hashbig, bignode);
}
let bignode = MerkleNode::Big(BigNode::new(children_nodes).unwrap());
let hashbig = hash(&bignode.serialize());
let node1 = MerkleNode::Chunk(ChunkNode::new(bob_content).unwrap());
let hash1 = hash(&node1.serialize());
let node2 = MerkleNode::Chunk(ChunkNode::new(alice_content).unwrap());
let hash2 = hash(&node2.serialize());
res.insert(hash1, node1);
res.insert(hash2, node2);
res.insert(hashbig, bignode);
let node3 = MerkleNode::Chunk(ChunkNode::new(oscar_content).unwrap());
let hash3 = hash(&node3.serialize());
res.insert(hash3, node3);
let dir1 = MerkleNode::Directory(DirectoryNode {
entries: [DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash3,
}]
.to_vec(),
});
let hash_dir1 = hash(&dir1.serialize());
res.insert(hash_dir1, dir1);
let root = MerkleNode::Directory(DirectoryNode {
entries: [
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hashbig,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash2,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash_dir1,
},
]
.to_vec(),
});
let root_hash = Sha256::digest(&root.serialize());
println!("root hash: {:?}", root_hash);
res.insert(root_hash.try_into().expect("incorrect size"), root);
MerkleTree::new(res, root_hash.try_into().expect("incorrect size"))
}
pub fn node_to_file(tree: &MerkleTree, node: &MerkleNode, path: String, i: u8) {
match node.clone() {
MerkleNode::Directory(dir) => {
if i != 0 {
let new_path = format!("{}/fold_{}", path.clone(), i);
match create_dir(new_path.clone()) {
Ok(_) => println!("Directory created successfully!"),
Err(e) => println!("Failed to create directory: {}", e),
}
}
for entry in dir.entries {
// creer un fichier pour chaque entry
if let Ok(filename_str) = String::from_utf8(entry.filename.to_vec()) {
let new_name = format!("{}{}", path.clone(), remove_null_bytes(&filename_str));
println!("new_name: {}", new_name);
let file = OpenOptions::new()
.append(true)
.create(true)
.open(new_name.clone());
match file {
Ok(mut fileok) => {
if let Some(current) = tree.data.get(&entry.content_hash) {
big_or_chunk_to_file(&tree, &current, &mut fileok);
}
}
Err(e) => {
eprintln!("error creaation file: {}", e);
}
}
}
}
}
MerkleNode::BigDirectory(bigdir) => {
for entry in bigdir.children_hashes.iter() {
if let Some(current) = tree.data.get(entry) {
node_to_file(tree, current, path.clone(), i + 1);
}
}
}
_ => {
eprintln!("invalid type of dir");
}
}
}
pub fn remove_null_bytes(input: &str) -> String {
input.chars().filter(|&c| c != '\0').collect()
}
pub fn big_or_chunk_to_file(tree: &MerkleTree, node: &MerkleNode, file: &mut File) {
match node {
MerkleNode::Big(big) => {
for entry in big.children_hashes.iter() {
if let Some(current) = tree.data.get(entry) {
big_or_chunk_to_file(tree, current, file);
}
}
}
MerkleNode::Chunk(chunk) => {
if !chunk.data.is_empty() {
let mut data = chunk.data.clone();
data.remove(0);
let _ = file.write(&data);
} else {
println!("chunk.data is empty, nothing to write");
}
}
_ => {
println!("invalid type of file");
}
}
}

View File

@@ -0,0 +1,200 @@
use crate::data::*;
use rand::{Rng, rng};
use std::collections::HashMap;
use std::hash::{DefaultHasher, Hash, Hasher};
fn hash(data: &[u8]) -> NodeHash {
let mut hasher = DefaultHasher::new();
data.hash(&mut hasher);
let hash_u64 = hasher.finish();
let mut hash_array = [0u8; FILENAME_HASH_SIZE];
// Simple way to spread a 64-bit hash across 32 bytes for a unique-ish ID
for i in 0..8 {
hash_array[i] = (hash_u64 >> (i * 8)) as u8;
}
hash_array // The rest remains 0, satisfying the 32-byte requirement
}
fn generate_random_filename() -> [u8; FILENAME_HASH_SIZE] {
let mut rng = rand::rng();
let mut filename_bytes = [0; FILENAME_HASH_SIZE];
// Generate a random length for the base name
let name_len = rng.random_range(5..21);
// Generate random alphanumeric characters
for i in 0..name_len {
let char_code = rng.random_range(97..123); // 'a' through 'z'
if i < FILENAME_HASH_SIZE {
filename_bytes[i] = char_code as u8;
}
}
// Append a common extension
let ext = if rng.random_bool(0.5) { ".txt" } else { ".dat" };
let ext_bytes = ext.as_bytes();
let start_index = name_len.min(FILENAME_HASH_SIZE - ext_bytes.len());
if start_index < FILENAME_HASH_SIZE {
filename_bytes[start_index..(start_index + ext_bytes.len())].copy_from_slice(ext_bytes);
}
filename_bytes
}
fn generate_random_file_node(
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let is_big = rng.random_bool(0.2); // 20% chance of being a big file
if !is_big {
// Generate a simple Chunk Node
let node = MerkleNode::Chunk(ChunkNode::new_random());
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a Big Node (a file composed of chunks)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(8)); // Limit complexity
let mut children_hashes = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Chunk or Big; for simplicity, we only generate Chunk children here.
let chunk_node = MerkleNode::Chunk(ChunkNode::new_random());
let chunk_hash = hash(&chunk_node.serialize());
storage.insert(chunk_hash, chunk_node);
children_hashes.push(chunk_hash);
}
let node = MerkleNode::Big(BigNode::new(children_hashes)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
fn generate_random_directory_node(
depth: u32,
max_depth: u32,
storage: &mut HashMap<NodeHash, MerkleNode>,
) -> Result<NodeHash, String> {
let mut rng = rng();
let current_depth = depth + 1;
let is_big_dir = rng.random_bool(0.3) && current_depth < max_depth;
if !is_big_dir || current_depth >= max_depth {
// Generate a simple Directory Node (leaf level directory)
let num_entries = rng.random_range(1..=MAX_DIRECTORY_ENTRIES.min(5)); // Limit directory size for testing
let mut entries = Vec::with_capacity(num_entries);
for _ in 0..num_entries {
if rng.random_bool(0.7) {
// 70% chance of creating a file (Chunk/Big)
let file_hash = generate_random_file_node(storage)?;
let entry = DirectoryEntry {
filename: generate_random_filename(),
content_hash: file_hash,
};
entries.push(entry);
} else if current_depth < max_depth {
// 30% chance of creating a subdirectory
let dir_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
// Create a basic directory entry name
let mut filename_bytes = [0; 32];
let subdir_name = format!("dir_{}", current_depth);
filename_bytes[..subdir_name.len()].copy_from_slice(subdir_name.as_bytes());
let entry = DirectoryEntry {
filename: filename_bytes,
content_hash: dir_hash,
};
entries.push(entry);
}
}
let node = MerkleNode::Directory(DirectoryNode::new(entries)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
} else {
// Generate a BigDirectory Node (internal directory structure)
let num_children = rng.random_range(MIN_BIG_CHILDREN..=MAX_BIG_CHILDREN.min(4)); // Limit children count
let mut children = Vec::with_capacity(num_children);
for _ in 0..num_children {
// Children must be Directory or BigDirectory
let child_hash = generate_random_directory_node(current_depth, max_depth, storage)?;
children.push(child_hash);
}
let node = MerkleNode::BigDirectory(BigDirectoryNode::new(children)?);
let hash = hash(&node.serialize());
storage.insert(hash, node);
Ok(hash)
}
}
pub fn generate_random_tree(
max_depth: u32,
) -> Result<(NodeHash, HashMap<NodeHash, MerkleNode>), String> {
let mut storage = HashMap::new();
// Start tree generation from the root directory at depth 0
let root_hash = generate_random_directory_node(0, max_depth, &mut storage)?;
Ok((root_hash, storage))
}
pub fn generate_base_tree() -> (NodeHash, HashMap<NodeHash, MerkleNode>) {
let mut res = HashMap::new();
let node1 = MerkleNode::Chunk(ChunkNode::new_random());
let hash1 = hash(&node1.serialize());
let node2 = MerkleNode::Chunk(ChunkNode::new_random());
let hash2 = hash(&node2.serialize());
res.insert(hash1, node1);
res.insert(hash2, node2);
let node3 = MerkleNode::Chunk(ChunkNode::new_random());
let hash3 = hash(&node3.serialize());
res.insert(hash3, node3);
let dir1 = MerkleNode::Directory(DirectoryNode {
entries: [DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash3,
}]
.to_vec(),
});
let hash_dir1 = hash(&dir1.serialize());
res.insert(hash_dir1, dir1);
let root = MerkleNode::Directory(DirectoryNode {
entries: [
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash1,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash2,
},
DirectoryEntry {
filename: generate_random_filename(),
content_hash: hash_dir1,
},
]
.to_vec(),
});
let root_hash = hash(&root.serialize());
res.insert(root_hash, root);
(root_hash, res)
}

View File

@@ -1,4 +1,4 @@
use crate::{BigDirectoryNode, DirectoryEntry, DirectoryNode, MerkleNode, NodeHash};
use crate::{BigDirectoryNode, DirectoryEntry, DirectoryNode, MerkleNode, MerkleTree, NodeHash};
use sha2::{Digest, Sha256};
const CHUNK: u8 = 0;
@@ -11,102 +11,78 @@ pub fn parse_received_datum(
datum_length: usize,
) -> Option<([u8; 32], MerkleNode)> {
let hash_name: [u8; 32] = recevied_datum[..32].try_into().expect("error");
let value = &recevied_datum[32..datum_length];
let sigstart = datum_length - 64;
let value = &recevied_datum[32..sigstart];
let value_slice = value.to_vec();
let datum_type = value_slice[0];
match datum_type {
CHUNK => Some((
hash_name,
MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
)),
DIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.try_into().expect("incorrect size"),
content_hash: hash,
});
}
println!(
"((value_slice.len() - 1) / 32) {} ",
((value_slice.len() - 1) / 32)
);
// Créer une instance de Sha256
let mut hasher = Sha256::new();
// Alimenter le hasher avec les données
hasher.update(value_slice.clone());
// Obtention du résultat
let result = hasher.finalize();
if result.to_vec() != hash_name.to_vec() {
println!("{:?},{:?}", result.to_vec(), hash_name.to_vec());
None
} else {
println!("hashes equals!");
let datum_type = value_slice[0];
match datum_type {
CHUNK => Some((
hash_name,
MerkleNode::Chunk(crate::ChunkNode { data: value_slice }),
)),
DIRECTORY => {
let mut dir_entries = Vec::new();
let mut offset: usize;
for i in 0..((value_slice.len() - 1) / 64) as u8 {
offset = (1 + 64 * i as usize) as usize;
println!("offset:{}, i:{}", offset, i);
let name = &value_slice[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&value_slice[offset + 32..offset + 64]);
let dp_name = String::from_utf8(name.to_vec()).expect("err");
println!("name:{}", dp_name);
// envoyer un datum request
dir_entries.push(DirectoryEntry {
filename: name.try_into().expect("incorrect size"),
content_hash: hash,
});
}
let current = DirectoryNode::new(dir_entries);
match current {
Ok(current_node) => Some((hash_name, MerkleNode::Directory(current_node))),
Err(e) => {
println!("{}", e);
None
}
let current = DirectoryNode::new(dir_entries);
match current {
Ok(current_node) => Some((hash_name, MerkleNode::Directory(current_node))),
Err(e) => {
println!("{}", e);
None
}
}
BIG => {
let mut bigdir_entries: Vec<NodeHash> = Vec::new();
let mut offset: usize;
for i in 0..((value_slice.len() - 1) / 32) as u8 {
offset = (1 + 32 * i as usize) as usize;
println!("offset:{}, i:{}", offset, i);
let hash = &value_slice[offset..offset + 32];
// envoyer un datum request
bigdir_entries.push(hash.try_into().expect("incorrect size"));
}
println!("its a BIG bro");
Some((
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: bigdir_entries,
}),
))
}
BIGDIRECTORY => {
let mut bigdir_entries: Vec<NodeHash> = Vec::new();
let mut offset: usize;
for i in 0..((value_slice.len() - 1) / 32) as u8 {
offset = (1 + 32 * i as usize) as usize;
println!("offset:{}, i:{}", offset, i);
let hash = &value_slice[offset..offset + 32];
// envoyer un datum request
bigdir_entries.push(hash.try_into().expect("incorrect size"));
}
let current = BigDirectoryNode::new(bigdir_entries);
match current {
Ok(current_node) => Some((hash_name, MerkleNode::BigDirectory(current_node))),
Err(e) => {
println!("{}", e);
None
}
}
}
_ => None,
}
BIG => {
let chlidren: Vec<NodeHash> = Vec::new();
Some((
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: chlidren,
}),
))
/*let chlidren: Vec<NodeHash> = Vec::new();
tree.data.insert(
hash_name,
MerkleNode::Big(crate::BigNode {
children_hashes: chlidren,
}),
);*/
}
BIGDIRECTORY => {
let nb_entries = value_slice[1];
let mut dir_entries = Vec::new();
let mut offset = 1 as usize;
for i in 0..nb_entries {
offset = (offset as u8 + 64 * i) as usize;
let name = &recevied_datum[offset..offset + 32];
let mut hash = [0u8; 32];
hash.copy_from_slice(&recevied_datum[offset + 32..offset + 64]);
// envoyer un datum request
dir_entries.push(hash);
}
let current = BigDirectoryNode::new(dir_entries);
match current {
Ok(current_node) => Some((hash_name, MerkleNode::BigDirectory(current_node))),
Err(e) => {
println!("{}", e);
None
}
}
}
_ => None,
}
}

View File

@@ -1,5 +1,6 @@
mod cryptographic_signature;
mod data;
mod datum_generation;
mod datum_parsing;
mod fetchsocketaddresserror;
mod message_handling;
@@ -12,16 +13,13 @@ mod threads_handling;
mod timestamp;
use crate::fetchsocketaddresserror::FetchSocketAddressError;
use crate::messages_structure::ROOTREPLY;
use crate::peers_refresh::*;
use crate::timestamp::Timestamp;
use crate::{
cryptographic_signature::CryptographicSignature,
message_handling::EventType,
messages_channels::{MultipleSenders, start_receving_thread, start_retry_thread},
messages_structure::{
DATUM, DATUMREQUEST, NATTRAVERSALREQUEST, NODATUM, PING, ROOTREQUEST, construct_message,
},
messages_structure::{NATTRAVERSALREQUEST, PING, ROOTREQUEST, construct_message},
peers_refresh::HandshakeHistory,
registration::{parse_addresses, perform_handshake, register_with_the_server},
server_communication::{generate_id, get_peer_list},
@@ -29,7 +27,7 @@ use crate::{
};
use std::{
io::Error,
net::{IpAddr, UdpSocket},
net::{IpAddr, Ipv4Addr, UdpSocket},
time::Duration,
};
use std::{
@@ -70,13 +68,7 @@ impl P2PSharedData {
let mut threads = Vec::new();
let senders = MultipleSenders::new(
5,
&shared_socket,
cmd_tx,
&mut threads,
shared_messageslist.clone(),
);
let senders = MultipleSenders::new(1, &shared_socket, cmd_tx, &mut threads);
let shared_senders = Arc::new(senders);
let server_name = Arc::new(Mutex::new("".to_string()));
let server_address = Arc::new(Mutex::new("".to_string()));
@@ -184,11 +176,7 @@ pub enum NetworkCommand {
Disconnect(),
ResetServerPeer(),
Discover(String, String, String),
GetChildren([u8; 32], String, bool),
SendDatum(MerkleNode, [u8; 32], String),
SendNoDatum(Vec<u8>, String),
SendRootReply(Vec<u8>, String),
InitDownload([u8; 32], String, String),
GetChildren(String, String),
// ...
}
@@ -197,17 +185,15 @@ pub enum NetworkEvent {
Connected(String),
ConnectedHandshake(),
Disconnected(),
Error(String, String),
Success(String, String),
Error(String),
Success(String),
PeerConnected(String),
PeerListUpdated(Vec<(String, bool)>),
FileTreeReceived([u8; 32], MerkleNode, String), // peer_id, content
DataReceived([u8; 32], MerkleNode, String),
FileTreeReceived([u8; 32], MerkleNode), // peer_id, content
DataReceived(String, MerkleNode),
FileTreeRootReceived(String, NodeHash),
HandshakeFailed(),
ServerHandshakeFailed(String),
DatumRequest([u8; 32], String),
RootRequest(String),
InitDownload([u8; 32], String, String),
// ...
}
@@ -218,12 +204,17 @@ use crossbeam_channel::{Receiver, Sender};
use sha2::{Digest, Sha256};
pub fn calculate_chunk_id(data: &[u8]) -> String {
// 1. Create a new Sha256 hasher instance
let mut hasher = Sha256::new();
// 2. Write the input data into the hasher
hasher.update(data);
// 3. Finalize the hash computation and get the resulting bytes
let hash_bytes = hasher.finalize();
// 4. Convert the hash bytes (array of u8) into a hexadecimal string
// This is the common, human-readable format for cryptographic IDs.
hex::encode(hash_bytes)
}
@@ -232,79 +223,17 @@ pub fn start_p2p_executor(
event_tx: Sender<NetworkEvent>,
mut shared_data: Option<P2PSharedData>,
) -> tokio::task::JoinHandle<()> {
// Use tokio to spawn the asynchronous networking logic
tokio::task::spawn(async move {
// P2P/Networking Setup goes here
println!("Network executor started.");
// Main network loop
loop {
// Check for commands from the GUI
if let Ok(cmd) = cmd_rx.try_recv() {
match cmd {
NetworkCommand::InitDownload(hash, ip, name) => {
if let Some(sd) = shared_data.as_ref() {
if let Some(res) = sd.handshake_peers.get_peer_info_username(ip) {
let _ = event_tx.send(NetworkEvent::InitDownload(
hash,
res.ip.to_string(),
name.to_string(),
));
}
}
}
NetworkCommand::SendRootReply(node_hash, addr) => {
if let Some(sd) = shared_data.as_mut() {
let mut payload = Vec::new();
payload.extend_from_slice(&node_hash);
let new_id = generate_id();
let message =
construct_message(ROOTREPLY, payload, new_id, sd.cryptopair_ref());
match message {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref()
.send_dispatch(resp_msg, addr.clone(), false);
}
}
}
}
NetworkCommand::SendNoDatum(node_hash, addr) => {
if let Some(sd) = shared_data.as_mut() {
let mut payload = Vec::new();
payload.extend_from_slice(&node_hash);
let new_id = generate_id();
let message =
construct_message(NODATUM, payload, new_id, sd.cryptopair_ref());
match message {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref()
.send_dispatch(resp_msg, addr.clone(), false);
}
}
}
}
NetworkCommand::SendDatum(merklennode, node_hash, addr) => {
if let Some(sd) = shared_data.as_mut() {
let mut payload = Vec::new();
payload.extend_from_slice(&node_hash);
payload.extend_from_slice(&merklennode.serialize());
let new_id = generate_id();
let message =
construct_message(DATUM, payload, new_id, sd.cryptopair_ref());
match message {
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref()
.send_dispatch(resp_msg, addr.clone(), false);
}
}
}
}
NetworkCommand::ServerHandshake(username, ip) => {
println!("server handshake called");
if let Some(sd) = shared_data.as_mut() {
@@ -321,70 +250,27 @@ pub fn start_p2p_executor(
sd.messages_list(),
sd.handshake_peers.get_username_peerinfo_map(),
);
let server_address = {
match get_server_address(username.to_owned(), ip.to_owned()).await {
Some(addr) => addr.to_string(),
None => {
match event_tx.send(NetworkEvent::Error(
"Couldn't fetch server socket address.".to_owned(),
username.to_owned(),
)) {
Ok(_) => {}
Err(e) => {
println!("Network Event Error : {}", e.to_string());
}
}
"".to_owned()
}
}
};
if server_address.to_owned().eq(&"".to_owned()) {
continue;
}
sd.set_servername(username.to_owned());
sd.set_serveraddress(server_address.to_string());
println!("SET SERVERADDRESS");
match perform_handshake(
&sd,
username.to_owned(),
ip,
event_tx.clone(),
(true, server_address.to_string()),
)
.await
{
true => {
match event_tx.send(NetworkEvent::Success(
"Handshake established ✔️".to_string(),
username.to_owned(),
)) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
}
false => {}
};
let res =
perform_handshake(&sd, username, ip, event_tx.clone(), true).await;
} else {
println!("no shared data");
}
}
NetworkCommand::ConnectPeer((username, _)) => {
NetworkCommand::ConnectPeer((username, connected)) => {
println!("[Network] ConnectPeer() called");
println!("[Network] Attempting to connect to: {}", username);
// Network logic to connect...
// If successful, send an event back:
// event_tx.send(NetworkEvent::PeerConnected(addr)).unwrap();
}
NetworkCommand::RequestFileTree(_) => {
println!("[Network] RequestFileTree() called");
}
NetworkCommand::Discover(username, _, ip) => {
NetworkCommand::Discover(username, hash, ip) => {
// envoie un handshake au peer, puis un root request
if let Some(sd) = shared_data.as_ref() {
let res = sd
.handshake_peers
.get_peer_info_username(username.to_owned());
let res = sd.handshake_peers.get_peer_info_username(username.clone());
match res {
Some(peerinfo) => {
let id = generate_id();
@@ -412,73 +298,29 @@ pub fn start_p2p_executor(
resp_msg,
peerinfo.ip.to_string(),
false,
sd.messages_list(),
);
}
}
}
None => {
// envoyer un handshake
match perform_handshake(
let res = perform_handshake(
&sd,
username.to_owned(),
username,
ip,
event_tx.clone(),
(false, "".to_string()),
false,
)
.await
{
true => {
match event_tx.send(NetworkEvent::Success(
"Handshake established ✔️".to_string(),
username.to_owned(),
)) {
Ok(_) => {}
Err(err) => {
println!(
"Network Event Error : {}",
err.to_string()
);
}
};
}
false => {}
}
.await;
}
}
} else {
println!("no shared data");
}
}
NetworkCommand::GetChildren(hash, ip, is_file) => {
if let Some(sd) = shared_data.as_ref() {
let mut payload = Vec::new();
payload.extend_from_slice(&hash);
let new_id = generate_id();
let datumreqest = construct_message(
DATUMREQUEST,
payload,
new_id,
sd.cryptopair_ref(),
);
match datumreqest {
None => {}
Some(resp_msg) => {
if is_file {
sd.add_message(new_id, EventType::DatumRequestBig);
} else {
sd.add_message(new_id, EventType::DatumRequest);
}
println!("msg_sent:{:?}", resp_msg);
sd.senders_ref().add_message_to_retry_queue(
resp_msg.clone(),
ip.clone(),
false,
);
sd.senders_ref().send_dispatch(resp_msg, ip.clone(), false);
}
}
}
NetworkCommand::GetChildren(username, hash) => {
// envoie un datum request au peer
}
NetworkCommand::RequestDirectoryContent(_, _) => {
println!("[Network] RequestDirectoryContent() called");
@@ -496,18 +338,8 @@ pub fn start_p2p_executor(
Err(e) => {
let mut err_msg = String::from("failed to initialize socket: ");
err_msg += &e.to_string();
match event_tx.send(NetworkEvent::Error(err_msg, name.to_owned())) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
match event_tx.send(NetworkEvent::Disconnected()) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
let res = event_tx.send(NetworkEvent::Error(err_msg));
let res = event_tx.send(NetworkEvent::Disconnected());
None
}
};
@@ -516,41 +348,31 @@ pub fn start_p2p_executor(
if let Err(e) = register_with_the_server(&sd.cryptopair(), &ip).await {
let mut err_msg = String::from("request failed: ");
err_msg += &e.to_string();
match event_tx.send(NetworkEvent::Error(err_msg, name.to_owned())) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
match event_tx.send(NetworkEvent::Disconnected()) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
let res = event_tx.send(NetworkEvent::Error(err_msg));
let res = event_tx.send(NetworkEvent::Disconnected());
} else {
match event_tx.send(NetworkEvent::Connected(ip)) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
let res = event_tx.send(NetworkEvent::Connected(ip));
println!("username created: {}", sd.cryptopair().username);
}
//println!("ip: {}", ip);
}
//tokio::time::sleep(std::time::Duration::from_millis(5000)).await;
/*let res = event_tx.send(NetworkEvent::Connected());
if let Some(error) = res.err() {
println!(
"[Network] Couldn't send crossbeam message to GUI: {}",
error.to_string()
);
}*/
}
NetworkCommand::FetchPeerList(ip) => {
println!("[Network] FetchPeerList() called");
if ip == "" {
match event_tx.send(NetworkEvent::Error(
let res = event_tx.send(NetworkEvent::Error(
"Not registered to any server".to_string(),
"".to_owned(),
)) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
};
));
} else {
println!("cc");
match get_peer_list(ip).await {
@@ -566,21 +388,14 @@ pub fn start_p2p_executor(
current.push(i);
}
}
match event_tx.send(NetworkEvent::PeerListUpdated(peers)) {
Ok(_) => {}
Err(err) => {
println!(
"Network Event Error : {}",
err.to_string()
);
}
};
let res =
event_tx.send(NetworkEvent::PeerListUpdated(peers));
}
Err(e) => {
eprintln!("invalid UTF-8 in socket address bytes: {}", e);
}
},
Err(e) => println!("error : {}", e),
Err(e) => println!("error"),
}
}
}
@@ -592,17 +407,29 @@ pub fn start_p2p_executor(
if let Some(sd) = shared_data.as_ref() {
let id = generate_id();
sd.add_message(id, EventType::Ping);
let pingrequest =
construct_message(PING, Vec::new(), id, sd.cryptopair_ref());
let peer_address =
get_socket_address(str.to_owned(), ip, shared_data.as_ref()).await;
get_socket_address(str, ip, shared_data.as_ref()).await;
match peer_address {
Ok(addr) => {
match event_tx.send(NetworkEvent::Success(
format!(
"Successfully sent ping message to {}.",
addr.to_string(),
),
str.to_owned(),
)) {
//if let Some(ping) = pingrequest {
// sd.senders_ref().add_message_to_retry_queue(
// ping.clone(),
// addr.to_string(),
// false,
// );
// sd.senders_ref().send_dispatch(
// ping,
// addr.to_string(),
// false,
// sd.messages_list(),
// );
//}
match event_tx.send(NetworkEvent::Success(format!(
"Successfully sent ping message to {}.",
addr.to_string()
))) {
Ok(_) => {}
Err(e) => {
eprintln!("NetworkEvent error : {}", e);
@@ -610,9 +437,7 @@ pub fn start_p2p_executor(
};
}
Err(err_msg) => {
match event_tx
.send(NetworkEvent::Error(err_msg.to_string(), str))
{
match event_tx.send(NetworkEvent::Error(err_msg.to_string())) {
Ok(_) => {}
Err(e) => {
eprintln!("NetworkEvent error : {}", e);
@@ -675,12 +500,11 @@ pub fn start_p2p_executor(
),
server_addr.to_string(),
false,
sd.messages_list(),
);
}
Err(err_msg) => {
match event_tx
.send(NetworkEvent::Error(err_msg.to_string(), username))
{
match event_tx.send(NetworkEvent::Error(err_msg.to_string())) {
Ok(_) => {}
Err(e) => {
eprintln!("NetworkEvent error : {}", e);
@@ -693,6 +517,12 @@ pub fn start_p2p_executor(
}
}
// 2. Poll network for new events (e.g., an incoming connection)
// ...
// When a new peer is found:
// event_tx.send(NetworkEvent::PeerConnected("NewPeerID".to_string())).unwrap();
// Avoid spinning too fast
sleep(std::time::Duration::from_millis(50)).await;
}
})
@@ -707,6 +537,22 @@ fn socket_addr_to_vec(addr: SocketAddr) -> Vec<u8> {
v
}
fn parse_pack(s: &str) -> Option<[u8; 6]> {
// split into "ip" and "port"
let mut parts = s.rsplitn(2, ':');
let port_str = parts.next()?;
let ip_str = parts.next()?; // if missing, invalid
let ip: Ipv4Addr = ip_str.parse().ok()?;
let port: u16 = port_str.parse().ok()?;
let octets = ip.octets();
let port_be = port.to_be_bytes();
Some([
octets[0], octets[1], octets[2], octets[3], port_be[0], port_be[1],
])
}
async fn quick_ping(addr: &SocketAddr, timeout_ms: u64, sd: &P2PSharedData) -> bool {
let id = generate_id();
let pingreq = construct_message(PING, Vec::new(), id, &sd.shared_cryptopair);
@@ -714,7 +560,7 @@ async fn quick_ping(addr: &SocketAddr, timeout_ms: u64, sd: &P2PSharedData) -> b
if let Some(ping) = pingreq {
sd.add_message(id, EventType::Ping);
sd.senders_ref()
.send_dispatch(ping, addr.to_string(), false);
.send_dispatch(ping, addr.to_string(), false, sd.messages_list());
}
sleep(Duration::from_millis(timeout_ms)).await;
@@ -733,6 +579,7 @@ async fn quick_ping(addr: &SocketAddr, timeout_ms: u64, sd: &P2PSharedData) -> b
///
/// sends a get request to the server to get the socket address of the given peer
///
pub async fn get_socket_address(
username: String,
ip: String,
@@ -776,16 +623,7 @@ pub async fn get_socket_address(
}
};
let addresses: Vec<SocketAddr> = {
let temp = parse_addresses(&s);
temp.iter()
.filter_map(|a| match a {
SocketAddr::V4(_) => Some(*a),
SocketAddr::V6(_) => None,
})
.collect()
};
let addresses = parse_addresses(&s); // assumes parse_addresses: &str -> Vec<SocketAddr>
if addresses.is_empty() {
return Err(FetchSocketAddressError::NoRegisteredAddresses);
} else if !addresses.iter().any(|a| matches!(a, SocketAddr::V4(_))) {
@@ -794,7 +632,7 @@ pub async fn get_socket_address(
for addr in addresses {
println!("trying address : {}", addr);
if quick_ping(&addr, 1000, sd).await {
if quick_ping(&addr, 5000, sd).await {
return Ok(addr);
}
@@ -808,9 +646,10 @@ pub async fn get_socket_address(
natreq.expect("couldnt construct message nattraversalrequest2"),
sd.serveraddress().to_string(),
false,
sd.messages_list(),
);
sleep(Duration::from_millis(1000)).await;
sleep(Duration::from_millis(5000)).await;
let maybe_entry = {
let guard = sd.messages_received_ref().lock().unwrap();
@@ -825,7 +664,7 @@ pub async fn get_socket_address(
}
}
if quick_ping(&addr, 5000, sd).await {
if quick_ping(&addr, 15000, sd).await {
return Ok(addr);
}
}

View File

@@ -1,15 +1,21 @@
use tokio::sync::oneshot;
use crate::{
NetworkEvent, NodeHash,
cryptographic_signature::{CryptographicSignature, get_peer_key, verify_signature},
NetworkEvent, NodeHash, P2PSharedData,
cryptographic_signature::{
CryptographicSignature, get_peer_key, sign_message, verify_signature,
},
datum_parsing::parse_received_datum,
messages_channels::MultipleSenders,
messages_structure::construct_message,
peers_refresh::HandshakeHistory,
registration,
server_communication::generate_id,
timestamp::Timestamp,
};
use std::{
collections::HashMap,
default,
net::{Ipv4Addr, SocketAddr},
};
use std::{
@@ -26,7 +32,6 @@ pub enum EventType {
Ping,
NatTraversal,
DatumRequest,
DatumRequestBig,
Unknown,
}
@@ -40,7 +45,6 @@ impl EventType {
EventType::NatTraversal => "NatTraversal".to_owned(),
EventType::DatumRequest => "DatumRequest".to_owned(),
EventType::Unknown => "Unknown".to_owned(),
EventType::DatumRequestBig => "DatumRequestBig".to_owned(),
}
}
@@ -60,6 +64,7 @@ const ID: usize = 4;
const TYPE: usize = 5;
const LENGTH: usize = 7;
const EXTENSIONS: usize = 4;
const SIGNATURE: usize = 64;
pub const PING: u8 = 0;
const OK: u8 = 128;
@@ -99,6 +104,7 @@ pub fn handle_recevied_message(
let length_bytes: [u8; 2] = recevied_message[TYPE..LENGTH]
.try_into()
.expect("Taille incorrecte");
let msg_length = u16::from_be_bytes(length_bytes) as usize;
let ilength = u16::from_be_bytes(length_bytes);
let received_name = &recevied_message[LENGTH + EXTENSIONS..LENGTH + ilength as usize];
let name = String::from_utf8(received_name.to_vec()).expect("wrong name");
@@ -123,7 +129,12 @@ pub fn handle_recevied_message(
None => {}
Some(resp_msg) => {
println!("msg_sent:{:?}", resp_msg);
senders.send_dispatch(resp_msg, ip.to_string(), is_resp_to_server_handshake);
senders.send_dispatch(
resp_msg,
ip.to_string(),
is_resp_to_server_handshake,
messages_list.clone(),
);
}
}
}
@@ -141,6 +152,10 @@ pub fn parse_message(
) -> Option<Vec<u8>> {
let cmd_tx_clone = cmd_tx.clone();
let id_bytes: [u8; 4] = received_message[0..ID]
.try_into()
.expect("Taille incorrecte");
let msgtype = received_message[ID];
messages_received
@@ -257,6 +272,7 @@ pub fn parse_message(
natreq2.expect("couldnt construct message nattraversalrequest2"),
address,
false,
messages_list.clone(),
);
}
@@ -266,6 +282,10 @@ pub fn parse_message(
let ilength = u16::from_be_bytes(length_bytes);
let received_address = &received_message[LENGTH..LENGTH + ilength as usize];
println!("received_address:{:?}", received_message);
//let addressv4 = IpAddr::V4(Ipv4Addr::from_octets(
// received_address[0..4].try_into().expect("incorrect size"),
//));
let bytes: [u8; 4] = received_address[0..4].try_into().expect("incorrect size");
let addr_v4 = Ipv4Addr::from(bytes);
let addressv4 = IpAddr::V4(addr_v4);
@@ -283,12 +303,14 @@ pub fn parse_message(
constructed_message.expect("couldnt construct message ping request"),
ip.to_string(),
false,
messages_list.clone(),
);
senders.send_dispatch(
pingreq.expect("couldnt construct message ping request"),
address.to_string(),
false,
messages_list.clone(),
);
constructed_message = None;
}
@@ -298,10 +320,10 @@ pub fn parse_message(
String::from_utf8(received_message[LENGTH..(msg_length + LENGTH)].to_vec())
{
let err_msg = format!("Error received from peer {} : {}", ip, err_received);
let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg, "".to_owned()));
let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg));
} else {
let err_msg = format!("Error received from peer {} : N/A", ip,);
let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg, "".to_owned()));
let _ = cmd_tx_clone.send(NetworkEvent::Error(err_msg));
}
}
@@ -351,11 +373,14 @@ pub fn parse_message(
// envoyer la root request
let _ = &guard.remove_entry(&id);
println!("message {} retiré de la liste", id);
let new_id = generate_id();
let rootrequest =
construct_message(ROOTREQUEST, Vec::new(), new_id, crypto_pair);
let _ = &guard.insert(new_id, EventType::RootRequest);
println!("root requesst sent");
let rootrequest = construct_message(
ROOTREQUEST,
Vec::new(),
generate_id(),
crypto_pair,
);
//&guard.insert(, v)
return rootrequest;
}
EventType::Hello => {
@@ -370,7 +395,6 @@ pub fn parse_message(
}
ROOTREPLY => {
// recuperer le pseudo du peers ayant repondu
println!("root reply received");
let peers_exist = handhsake_history.get_peer_info_ip(ip.to_string());
match peers_exist {
Some(peerinfo) => {
@@ -389,15 +413,11 @@ pub fn parse_message(
[LENGTH..(32 + LENGTH)]
.try_into()
.expect("incorrect size");
match cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived(
peerinfo.username.clone(),
received_hash,
)) {
Ok(_) => {}
Err(e) => {
println!("Network Event Error : {}", e.to_string());
}
};
let res =
cmd_tx_clone.send(NetworkEvent::FileTreeRootReceived(
peerinfo.username.clone(),
received_hash,
));
println!("file tree sent");
// envoyer un datum
let mut payload = Vec::new();
@@ -412,9 +432,7 @@ pub fn parse_message(
constructed_message = datumreqest;
guard.insert(new_id, EventType::DatumRequest);
}
_ => {
println!("event not prensent");
}
_ => {}
}
}
None => {}
@@ -443,62 +461,17 @@ pub fn parse_message(
parse_received_datum(received_datum.to_vec(), received_length as usize);
match parsed_node {
Some(tuple) => {
let _ = cmd_tx.send(NetworkEvent::FileTreeReceived(
tuple.0,
tuple.1,
ip.to_string(),
));
let _ =
cmd_tx.send(NetworkEvent::FileTreeReceived(tuple.0, tuple.1));
}
None => {}
}
}
EventType::DatumRequestBig => {
println!("message {} retiré de la liste", id);
let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH]
.try_into()
.expect("incorrect size"),
);
println!("received length:{}", received_length);
let received_datum = &received_message[LENGTH..];
let parsed_node =
parse_received_datum(received_datum.to_vec(), received_length as usize);
match parsed_node {
Some(tuple) => {
let _ = &guard.remove_entry(&id);
let _ = cmd_tx.send(NetworkEvent::DataReceived(
tuple.0,
tuple.1,
ip.to_string(),
));
println!("datareceived event sent");
}
None => {
println!("message corrompu, nouvelle tentative");
}
}
}
_ => {}
},
None => {}
}
}
ROOTREQUEST => {
println!("root request received");
let _ = cmd_tx.send(NetworkEvent::RootRequest(ip.to_string()));
}
DATUMREQUEST => {
let received_length = u16::from_be_bytes(
received_message[TYPE..LENGTH]
.try_into()
.expect("incorrect size"),
);
let received_hash = &received_message[LENGTH..LENGTH + received_length as usize];
let _ = cmd_tx.send(NetworkEvent::DatumRequest(
received_hash.try_into().expect("incorrect size"),
ip.to_string(),
));
}
_ => return None,
};
constructed_message

View File

@@ -1,20 +1,26 @@
use crossbeam_channel::Receiver;
use tokio::sync::oneshot;
use tokio::time::sleep;
use crate::P2PSharedData;
use crate::message_handling::EventType;
use crate::message_handling::handle_recevied_message;
use crate::peers_refresh::HandshakeHistory;
use crate::threads_handling::Worker;
use std::collections::HashMap;
use std::clone;
use std::collections::{HashMap, HashSet};
use std::hash::Hash;
use std::net::SocketAddr;
use std::net::UdpSocket;
use std::sync::{Arc, Mutex};
use std::sync::mpsc::{self, Sender};
use std::thread;
use std::collections::VecDeque;
use std::time::Duration;
use std::time::SystemTime;
use std::time::UNIX_EPOCH;
use std::time::{Duration, Instant};
use crate::NetworkEvent;
@@ -32,8 +38,10 @@ struct RetryMessage {
pub struct MultipleSenders {
sender: crossbeam_channel::Sender<Message>,
receiver: crossbeam_channel::Receiver<Message>,
response_channel: crossbeam_channel::Sender<NetworkEvent>,
retry_queue: Arc<Mutex<VecDeque<RetryMessage>>>,
completed_messages: HashSet<i32>,
}
impl MultipleSenders {
@@ -42,7 +50,6 @@ impl MultipleSenders {
socket: &Arc<UdpSocket>,
cmd_tx: crossbeam_channel::Sender<NetworkEvent>,
threads: &mut Vec<Worker>,
messages_list: Arc<Mutex<HashMap<i32, EventType>>>,
) -> Self {
let (tx1, rx1) = crossbeam_channel::unbounded();
@@ -50,22 +57,18 @@ impl MultipleSenders {
let sock_clone = Arc::clone(&socket);
let cmd_tx_clone = cmd_tx.clone();
let rx: Receiver<Message> = rx1.clone();
let msg_list_clone = messages_list.clone();
let thread = thread::spawn(move || {
println!("Canal d'envoi {} prêt", i);
loop {
// Priorité aux messages en attente prêts à être réessayés
// Si aucun retry prêt, on bloque sur rx avec timeout court, pour pouvoir traiter les timers
let msg = rx.recv().unwrap();
match sock_clone.send_to(&msg.payload, &msg.address) {
Ok(_) => {
if msg.is_resp_to_server_handshake {
match cmd_tx_clone.send(NetworkEvent::ConnectedHandshake()) {
Ok(_) => {}
Err(e) => {
println!("Network Event Error : {}", e.to_string());
}
};
let res = cmd_tx_clone.send(NetworkEvent::ConnectedHandshake());
}
let message_id: [u8; 4] =
msg.payload[0..4].try_into().expect("size error");
@@ -81,33 +84,61 @@ impl MultipleSenders {
"Erreur d'envoi initial sur canal {}: {}, address: {}",
i, e, &msg.address
);
let mut guard = msg_list_clone.lock().unwrap();
let message_id: [u8; 4] =
msg.payload[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
guard.remove_entry(&id);
drop(guard);
}
}
}
});
threads.push(Worker::spawn(thread));
threads.push(Worker::spawn(
thread,
crate::threads_handling::WorkerType::MSGSENDER,
));
}
MultipleSenders {
sender: tx1,
receiver: rx1,
response_channel: cmd_tx.clone(),
retry_queue: Arc::new(Mutex::new(VecDeque::new())),
completed_messages: HashSet::new(),
}
}
/*
/// Envoie un message via un canal spécifique (round-robin ou index précis)
pub fn send_via(
&self,
channel_idx: usize,
data: Vec<u8>,
remote_addr: String,
is_resp_to_server_handshake: bool,
messages_list: &Mutex<HashMap<i32, EventType>>,
) {
println!(
"is_resp_to_server_handshake {}",
is_resp_to_server_handshake
);
let msg_to_send = Message {
payload: data.clone(),
address: remote_addr,
is_resp_to_server_handshake,
};
if let Some(sender) = self.senders.get(channel_idx) {
let _ = sender.send(msg_to_send);
}
if !is_resp_to_server_handshake {
let mut guard = messages_list.lock().unwrap();
let message_id: [u8; 4] = data[0..4].try_into().expect("size error");
let id = i32::from_be_bytes(message_id);
guard.insert(id, EventType::SendRootRequest);
}
}*/
pub fn send_dispatch(
&self,
data: Vec<u8>,
remote_addr: String,
is_resp_to_server_handshake: bool,
messages_list: Arc<Mutex<HashMap<i32, EventType>>>,
) {
let msg_to_send = Message {
payload: data.clone(),
@@ -168,7 +199,8 @@ pub fn start_retry_thread(
if guard.contains_key(&id) {
drop(guard);
// si le message est n'a pas encore a etre traité, on le
// remet en queue de liste
if front.next_try
<= SystemTime::now()
.duration_since(UNIX_EPOCH)
@@ -183,15 +215,9 @@ pub fn start_retry_thread(
);
println!("{}", str);
if front.msg.is_resp_to_server_handshake {
match senders
let res = senders
.response_channel
.send(NetworkEvent::ServerHandshakeFailed(str))
{
Ok(_) => {}
Err(e) => {
println!("Network Event Error : {}", e.to_string());
}
};
.send(NetworkEvent::ServerHandshakeFailed(str));
}
} else {
let str = format!(
@@ -204,11 +230,11 @@ pub fn start_retry_thread(
front.msg.payload.clone(),
front.msg.address.clone(),
front.msg.is_resp_to_server_handshake,
messages_list.clone(),
);
let base: u64 = 2;
let backoff = base.saturating_pow(attempt as u32); // 2^1 == 2 seconds
//let backoff = 1;
let newretry = RetryMessage {
next_try: SystemTime::now()
.duration_since(UNIX_EPOCH)
@@ -219,16 +245,19 @@ pub fn start_retry_thread(
attempts: attempt,
};
q.push_back(newretry);
q.push_back(newretry); // remettre en tête pour réessayer plus tôt
}
} else {
q.push_back(front);
q.push_back(front); // remettre en tête pour réessayer plus tôt
}
}
}
}
});
threads.push(Worker::spawn(thread));
threads.push(Worker::spawn(
thread,
crate::threads_handling::WorkerType::MSGRETRY,
));
}
pub fn start_receving_thread(
@@ -243,13 +272,13 @@ pub fn start_receving_thread(
let messages_received_clone = shared_data.messages_received();
let servername_clone = shared_data.servername();
let thread = thread::spawn(move || {
let mut buf = [0u8; 1500];
let mut buf = [0u8; 1024];
loop {
match sock_clone.recv_from(&mut buf) {
Ok((amt, src)) => {
let received_data = buf[..amt].to_vec();
println!("Reçu {} octets de {}", amt, src);
println!("Reçu {} octets de {}: {:?}", amt, src, received_data);
handle_recevied_message(
&messages_clone,
&messages_received_clone,
@@ -266,5 +295,8 @@ pub fn start_receving_thread(
}
}
});
shared_data.threads.push(Worker::spawn(thread));
shared_data.threads.push(Worker::spawn(
thread,
crate::threads_handling::WorkerType::MSGRECEPTION,
));
}

View File

@@ -1,4 +1,3 @@
#![allow(unused)]
use crate::cryptographic_signature::{CryptographicSignature, sign_message};
const ID: usize = 4;
@@ -164,7 +163,7 @@ impl HandshakeMessage {
}
}
pub fn hello_reply(id: u32, length: u16, username: String) -> HandshakeMessage {
pub fn helloReply(id: u32, length: u16, username: String) -> HandshakeMessage {
let name_vec = username.trim_end_matches(char::from(0)).as_bytes().to_vec();
HandshakeMessage {
id: id,
@@ -220,3 +219,28 @@ impl HandshakeMessage {
}
}
}
#[cfg(test)]
mod tests {
// Note this useful idiom: importing names from outer (for mod tests) scope.
use super::*;
/// creates an handshake message
#[tokio::test]
async fn creating_handshake_msg() {
let username = String::from("charlie_kirk");
let handshake = HandshakeMessage::hello(0, 12, username);
handshake.display();
}
/// parses an handshake message
#[tokio::test]
async fn parse_handshakemessage() {
let username = String::from("charlie_kirk");
let handshake = HandshakeMessage::hello(0, 12, username);
let ser = handshake.serialize();
let parsed = HandshakeMessage::parse(ser);
handshake.display();
parsed.display();
}
}

View File

@@ -4,18 +4,24 @@
pub use crate::message_handling::*;
use std::{
collections::HashMap,
net::SocketAddr,
collections::{HashMap, VecDeque},
net::{AddrParseError, Ipv4Addr, SocketAddr},
ops::Add,
process::Command,
sync::{Arc, Mutex},
thread::{self},
time::Duration,
thread::{self, JoinHandle},
time::{self, Duration, SystemTime},
};
use crate::{construct_message, generate_id};
use crate::{
cryptographic_signature::CryptographicSignature, messages_channels::MultipleSenders,
threads_handling::Worker,
NetworkEvent, cryptographic_signature::CryptographicSignature,
messages_channels::MultipleSenders, threads_handling::Worker,
};
use crate::{
P2PSharedData, construct_message, generate_id, messages_structure,
registration::perform_handshake,
};
use crossbeam_channel::{Receiver, Sender};
use p256::ecdsa::VerifyingKey;
#[derive(Debug, Clone)]
@@ -111,7 +117,7 @@ pub fn update_handshake(
let handle = thread::spawn(move || {
loop {
let guard = map_for_thread.lock().unwrap();
for (_, peerinfo) in guard.iter() {
for (peer, peerinfo) in guard.iter() {
let id = generate_id();
let mut map = messages_list.lock().unwrap();
map.insert(id, EventType::Ping);
@@ -122,12 +128,34 @@ pub fn update_handshake(
peerinfo.ip.to_string(),
false,
);
senders.send_dispatch(ping, peerinfo.ip.to_string(), false);
senders.send_dispatch(
ping,
peerinfo.ip.to_string(),
false,
messages_list.clone(),
);
}
}
drop(guard);
thread::sleep(Duration::from_secs(60));
thread::sleep(Duration::from_secs(240));
}
});
Worker::spawn(handle)
Worker::spawn(handle, crate::threads_handling::WorkerType::PING)
}
#[cfg(test)]
mod tests {
use std::net::{IpAddr, Ipv4Addr};
use super::*;
/*#[test]
fn creating_cryptographic_signature() {
let mut hh = HandshakeHistory::new();
hh.add_new_handshake(
20,
"putain".to_string(),
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 1),
);
}*/
}

View File

@@ -1,7 +1,7 @@
use crate::NetworkEvent;
use crate::P2PSharedData;
use crate::cryptographic_signature::CryptographicSignature;
use crate::get_socket_address;
use crate::get_server_address;
use crate::message_handling::EventType;
use crate::messages_structure::construct_message;
use crate::server_communication::generate_id;
@@ -55,59 +55,94 @@ pub async fn perform_handshake(
username: String,
ip: String,
event_tx: Sender<NetworkEvent>,
is_server_handshake: (bool, String),
) -> bool {
is_server_handshake: bool,
) {
println!("username: {}, ip: {}", username.clone(), ip.clone());
let crypto_pair = sd.cryptopair_ref();
let senders = sd.senders_ref();
let id = generate_id();
let server_addr_query = get_server_address(username.clone(), ip.clone());
match server_addr_query.await {
Some(sockaddr_bytes) => {
sd.set_servername(username);
sd.set_serveraddress(sockaddr_bytes.to_string());
// first: &SocketAddr
let mut payload = Vec::new();
payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let hello_handshake = construct_message(1, payload, id, crypto_pair);
if is_server_handshake {
sd.add_message(id, EventType::Hello);
} else {
sd.add_message(id, EventType::HelloThenRootRequest);
}
let address = {
if is_server_handshake.0 {
is_server_handshake.1
} else {
let server_addr_query =
get_socket_address(username.clone(), ip.clone(), Some(sd)).await;
match server_addr_query {
Ok(sockaddr_bytes) => sockaddr_bytes.to_string(),
Err(err_msg) => {
match event_tx.send(NetworkEvent::Error(
err_msg.to_string(),
username.to_owned(),
)) {
Ok(_) => {}
Err(err) => {
println!("Network Event Error : {}", err.to_string());
}
}
"".to_string()
match hello_handshake {
Some(handshake_message) => {
senders.send_dispatch(
handshake_message,
sockaddr_bytes.to_string(),
is_server_handshake,
sd.messages_list(),
);
}
None => {}
}
}
};
if address.eq(&"".to_string()) {
return false;
}
let mut payload = Vec::new();
payload.extend_from_slice(&0u32.to_be_bytes());
payload.extend_from_slice(&crypto_pair.username.clone().as_bytes());
let hello_handshake = construct_message(1, payload, id, crypto_pair);
if is_server_handshake.0 {
sd.add_message(id, EventType::Hello);
} else {
sd.add_message(id, EventType::HelloThenRootRequest);
}
match hello_handshake {
Some(handshake_message) => {
senders.send_dispatch(handshake_message, address, is_server_handshake.0);
None => {
let err_msg = format!("failed to retreive socket address:").to_string();
let res = event_tx.send(NetworkEvent::Error(err_msg));
}
None => {}
}
return true;
/*let mut list = messages_list.lock().expect("Failed to lock messages_list");
match list.get(&id) {
Some(_) => {
list.remove(&id);
}
None => {
list.insert(id, EventType::ServerHelloReply);
}
}
println!("message sent: {}", &id);*/
// 3. Perform the insertion
/*let mut buf = [0u8; 1024];
socket.recv_from(&mut buf).expect("receive failed");
let hello_handshake_received = UDPMessage::parse(buf.to_vec());
hello_handshake_received.display();*/
//TODO
}
#[cfg(test)]
mod tests {
/*///
/// does the procedure to register with the server
///
#[tokio::test]
async fn registering_with_server() {
let username = String::from("gameixtreize");
let server_uri = String::from("https://jch.irif.fr:8443");
let crypto_pair = CryptographicSignature::new(username);
if let Err(e) = register_with_the_server(crypto_pair, server_uri).await {
eprintln!("Error during registration: {}", e);
}
}*/
/*///
/// retreives the socket address of a given peer
///
#[tokio::test]
async fn retreive_socket_addr() {
let username = String::from("ipjkndqfshjldfsjlbsdfjhhj");
match get_socket_address(username).await {
Ok(body) => {
println!("{:?}", body);
}
Err(e) => {
eprintln!("Erreur HTTP: {}", e);
}
}
}*/
}

View File

@@ -4,16 +4,25 @@ use std::sync::{
};
use std::thread::JoinHandle;
pub enum WorkerType {
MSGRECEPTION,
MSGSENDER,
PING,
MSGRETRY,
}
pub struct Worker {
thread: Option<JoinHandle<()>>,
stop: Arc<AtomicBool>,
workertype: WorkerType,
}
impl Worker {
pub fn spawn(thread: JoinHandle<()>) -> Self {
pub fn spawn(thread: JoinHandle<()>, workertype: WorkerType) -> Self {
Worker {
stop: Arc::new(AtomicBool::new(false)),
thread: Some(thread),
workertype,
}
}

Binary file not shown.

View File

@@ -1 +0,0 @@
https://docs.google.com/document/d/1emhrAfjJyJTWpBYx4IJGcCz0_iLVjDRAAdq2EZFchKo/edit?usp=sharing

25
todo.md
View File

@@ -1,11 +1,24 @@
# Todo
## bugfix
- ajouter hello et nat a l'exp backoff OK
- peers n'ayant pas d'adresse OK
- verifier le refresh des peers
- setting in gui to act as a relay
- make hello and helloreply messages set the first extension bit to announce that peer is available for nat traversal
- implement actual nat traversal requests
- implement nat traversal :
- if hello/helloreply doesnt work with a peer, find a peer that supports nat traversal (server in priority) then begin protocol
## fonctionnalités :
- proposer des fichiers
- telechargement des fichiers
- receivers threads
- ask for nat traversal
rechercher les fichiers d'un pair
telechargement des fichiers
choisir un dossier à partager
choisir le nombre de canaux
## autre
@@ -13,7 +26,6 @@ socket ipv6
# FAIT
rechercher les fichiers d'un pair OK
- choisir un pseudo OK
- get rsquest to the uri /peers/ OK
- generation of the cryptographic key OK
@@ -32,6 +44,3 @@ rechercher les fichiers d'un pair OK
- datum/nodatum and datum structures
- nattraversal 1 and 2 structures
- chunk, directory, big, bigdirectory structures
- ajouter hello et nat a l'exp backoff OK
- peers n'ayant pas d'adresse OK
- verifier le refresh des peers OK